You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -54,7 +54,7 @@ public sealed class Options : OptionsBase
54
54
/// <summary>
55
55
/// The instance of <see cref="ComputeLogisticRegressionStandardDeviation"/> that computes the std of the training statistics, at the end of training.
56
56
/// The calculations are not part of Microsoft.ML package, due to the size of MKL.
57
-
/// If you need these calculations, add the Microsoft.ML.Mkl.Components package, and initialize <see cref="LogisticRegressionBinaryTrainer.Options.ComputeStandardDeviation"/>.
57
+
/// If you need these calculations, add the Microsoft.ML.Mkl.Components package, and initialize <see cref="LbfgsLogisticRegressionTrainer.Options.ComputeStandardDeviation"/>.
58
58
/// to the <see cref="ComputeLogisticRegressionStandardDeviation"/> implementation in the Microsoft.ML.Mkl.Components package.
@@ -436,7 +436,7 @@ public abstract class ComputeLogisticRegressionStandardDeviation
436
436
/// Computes the standard deviation matrix of each of the non-zero training weights, needed to calculate further the standard deviation,
437
437
/// p-value and z-Score.
438
438
/// The calculations are not part of Microsoft.ML package, due to the size of MKL.
439
-
/// If you need these calculations, add the Microsoft.ML.Mkl.Components package, and initialize <see cref="LogisticRegressionBinaryTrainer.Options.ComputeStandardDeviation"/>
439
+
/// If you need these calculations, add the Microsoft.ML.Mkl.Components package, and initialize <see cref="LbfgsLogisticRegressionTrainer.Options.ComputeStandardDeviation"/>
440
440
/// to the <see cref="ComputeLogisticRegressionStandardDeviation"/> implementation in the Microsoft.ML.Mkl.Components package.
441
441
/// Due to the existence of regularization, an approximation is used to compute the variances of the trained linear coefficients.
/// Predict a target using a linear binary classification model trained with the <see cref="Microsoft.ML.Trainers.LogisticRegressionBinaryTrainer"/> trainer.
20
+
/// Predict a target using a linear binary classification model trained with the <see cref="Microsoft.ML.Trainers.LbfgsLogisticRegressionTrainer"/> trainer.
@@ -63,7 +63,7 @@ public static (Scalar<float> score, Scalar<float> probability, Scalar<bool> pred
63
63
}
64
64
65
65
/// <summary>
66
-
/// Predict a target using a linear binary classification model trained with the <see cref="Microsoft.ML.Trainers.LogisticRegressionBinaryTrainer"/> trainer.
66
+
/// Predict a target using a linear binary classification model trained with the <see cref="Microsoft.ML.Trainers.LbfgsLogisticRegressionTrainer"/> trainer.
0 commit comments