You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/// This trainer is a generalization of Poisson, compound Poisson, and gamma regression.
31
31
/// </summary>
32
32
/// <remarks>
33
+
/// <format type="text/markdown"><)
35
+
/// or [FastTreeTweedie(Options)](xref:Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options)).
/// | Required NuGet in addition to Microsoft.ML | Microsoft.ML.FastTree |
46
+
///
47
+
/// ### Training Algorithm Details
33
48
/// The Tweedie boosting model follows the mathematics established in <a href="https://arxiv.org/pdf/1508.06378.pdf">
34
49
/// Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models</a> from Yang, Quan, and Zou.
35
50
/// For an introduction to Gradient Boosting, and more information, see:
36
-
/// <a href='https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting'> Wikipedia: Gradient boosting(Gradient tree boosting)</a> or
37
-
/// <a href='https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451'> Greedy function approximation: A gradient boosting machine</a>.
51
+
/// [Wikipedia: Gradient boosting(Gradient tree boosting)](https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting) or
52
+
/// [Greedy function approximation: A gradient boosting machine](https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451).
/// <param name="labelColumnName">The name of the label column.</param>
285
-
/// <param name="featureColumnName">The name of the feature column.</param>
284
+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/>.</param>
285
+
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
286
286
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
287
287
/// <param name="numberOfTrees">Total number of decision trees to create in the ensemble.</param>
288
288
/// <param name="numberOfLeaves">The maximum number of leaves per decision tree.</param>
@@ -310,7 +310,7 @@ public static FastTreeTweedieTrainer FastTreeTweedie(this RegressionCatalog.Regr
310
310
}
311
311
312
312
/// <summary>
313
-
/// Predict a target using a decision tree regression model trained with the <see cref="FastTreeTweedieTrainer"/> and advanced options.
313
+
/// Creates <see cref="FastTreeTweedieTrainer"/>, which predicts a target using a decision tree regression model with advanced options.
0 commit comments