You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
public sealed partial class OrdinaryLeastSquaresRegressor : Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithWeight, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithLabel, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInput, Microsoft.ML.ILearningPipelineItem
8844
+
{
8845
+
8846
+
8847
+
/// <summary>
8848
+
/// L2 regularization weight
8849
+
/// </summary>
8850
+
[TlcModule.SweepableDiscreteParamAttribute("L2Weight", new object[]{1E-06f, 0.1f, 1f})]
8851
+
public float L2Weight { get; set; } = 1E-06f;
8852
+
8853
+
/// <summary>
8854
+
/// Whether to calculate per parameter significance statistics
8855
+
/// </summary>
8856
+
public bool PerParameterSignificance { get; set; } = true;
8857
+
8858
+
/// <summary>
8859
+
/// Column to use for example weight
8860
+
/// </summary>
8861
+
public Microsoft.ML.Runtime.EntryPoints.Optional<string> WeightColumn { get; set; }
8862
+
8863
+
/// <summary>
8864
+
/// Column to use for labels
8865
+
/// </summary>
8866
+
public string LabelColumn { get; set; } = "Label";
8867
+
8868
+
/// <summary>
8869
+
/// The data to be used for training
8870
+
/// </summary>
8871
+
public Var<Microsoft.ML.Runtime.Data.IDataView> TrainingData { get; set; } = new Var<Microsoft.ML.Runtime.Data.IDataView>();
8872
+
8873
+
/// <summary>
8874
+
/// Column to use for features
8875
+
/// </summary>
8876
+
public string FeatureColumn { get; set; } = "Features";
8877
+
8878
+
/// <summary>
8879
+
/// Normalize option for the feature column
8880
+
/// </summary>
8881
+
public Microsoft.ML.Models.NormalizeOption NormalizeFeatures { get; set; } = Microsoft.ML.Models.NormalizeOption.Auto;
8882
+
8883
+
/// <summary>
8884
+
/// Whether learner should cache input training data
8885
+
/// </summary>
8886
+
public Microsoft.ML.Models.CachingOptions Caching { get; set; } = Microsoft.ML.Models.CachingOptions.Auto;
8887
+
8888
+
8889
+
public sealed class Output : Microsoft.ML.Runtime.EntryPoints.CommonOutputs.IRegressionOutput, Microsoft.ML.Runtime.EntryPoints.CommonOutputs.ITrainerOutput
8890
+
{
8891
+
/// <summary>
8892
+
/// The trained model
8893
+
/// </summary>
8894
+
public Var<Microsoft.ML.Runtime.EntryPoints.IPredictorModel> PredictorModel { get; set; } = new Var<Microsoft.ML.Runtime.EntryPoints.IPredictorModel>();
8895
+
8896
+
}
8897
+
public Var<IDataView> GetInputData() => TrainingData;
8898
+
8899
+
public ILearningPipelineStep ApplyStep(ILearningPipelineStep previousStep, Experiment experiment)
8900
+
{
8901
+
if (previousStep != null)
8902
+
{
8903
+
if (!(previousStep is ILearningPipelineDataStep dataStep))
8904
+
{
8905
+
throw new InvalidOperationException($"{ nameof(OrdinaryLeastSquaresRegressor)} only supports an { nameof(ILearningPipelineDataStep)} as an input.");
8906
+
}
8907
+
8908
+
TrainingData = dataStep.Data;
8909
+
}
8910
+
Output output = experiment.Add(this);
8911
+
return new OrdinaryLeastSquaresRegressorPipelineStep(output);
8912
+
}
8913
+
8914
+
private class OrdinaryLeastSquaresRegressorPipelineStep : ILearningPipelinePredictorStep
8915
+
{
8916
+
public OrdinaryLeastSquaresRegressorPipelineStep(Output output)
Copy file name to clipboardExpand all lines: test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv
+1
Original file line number
Diff line number
Diff line change
@@ -59,6 +59,7 @@ Trainers.LogisticRegressionBinaryClassifier Logistic Regression is a method in s
59
59
Trainers.LogisticRegressionClassifierLogistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function.Microsoft.ML.Runtime.Learners.LogisticRegressionTrainMultiClassMicrosoft.ML.Runtime.Learners.MulticlassLogisticRegression+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+MulticlassClassificationOutput
60
60
Trainers.NaiveBayesClassifierTrain a MultiClassNaiveBayesTrainer.Microsoft.ML.Runtime.Learners.MultiClassNaiveBayesTrainerTrainMultiClassNaiveBayesTrainerMicrosoft.ML.Runtime.Learners.MultiClassNaiveBayesTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+MulticlassClassificationOutput
61
61
Trainers.OnlineGradientDescentRegressorTrain a Online gradient descent perceptron.Microsoft.ML.Runtime.Learners.OnlineGradientDescentTrainerTrainRegressionMicrosoft.ML.Runtime.Learners.OnlineGradientDescentTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
62
+
Trainers.OrdinaryLeastSquaresRegressorTrain an OLS regression model.Microsoft.ML.Runtime.Learners.OlsLinearRegressionTrainerTrainRegressionMicrosoft.ML.Runtime.Learners.OlsLinearRegressionTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
62
63
Trainers.PcaAnomalyDetectorTrain an PCA Anomaly model.Microsoft.ML.Runtime.PCA.RandomizedPcaTrainerTrainPcaAnomalyMicrosoft.ML.Runtime.PCA.RandomizedPcaTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+AnomalyDetectionOutput
63
64
Trainers.PoissonRegressorTrain an Poisson regression model.Microsoft.ML.Runtime.Learners.PoissonRegressionTrainRegressionMicrosoft.ML.Runtime.Learners.PoissonRegression+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
64
65
Trainers.StochasticDualCoordinateAscentBinaryClassifierTrain an SDCA binary model.Microsoft.ML.Runtime.Learners.SdcaTrainBinaryMicrosoft.ML.Runtime.Learners.LinearClassificationTrainer+ArgumentsMicrosoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
0 commit comments