You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[Argument(ArgumentType.AtMostOnce,HelpText="Dataset language or 'AutoDetect' to detect language per row.",ShortName="lang",SortOrder=3)]
97
97
publicLanguageLanguage=DefaultLanguage;
@@ -115,67 +115,80 @@ internal sealed class Arguments : TransformInputBase
115
115
publicboolOutputTokens;
116
116
117
117
[Argument(ArgumentType.Multiple,HelpText="A dictionary of whitelisted terms.",ShortName="dict",NullName="<None>",SortOrder=10,Hide=true)]
118
-
publicTermLoaderArgumentsDictionary;
118
+
internalTermLoaderArgumentsDictionary;
119
119
120
120
[TGUI(Label="Word Gram Extractor")]
121
-
[Argument(ArgumentType.Multiple,HelpText="Ngram feature extractor to use for words (WordBag/WordHashBag).",ShortName="wordExtractor",NullName="<None>",SortOrder=11)]
[Argument(ArgumentType.Multiple,HelpText="Ngram feature extractor to use for characters (WordBag/WordHashBag).",ShortName="charExtractor",NullName="<None>",SortOrder=12)]
[Argument(ArgumentType.Multiple,Name="WordFeatureExtractor",HelpText="Ngram feature extractor to use for words (WordBag/WordHashBag).",ShortName="wordExtractor",NullName="<None>",SortOrder=11)]
[Argument(ArgumentType.Multiple,Name="CharFeatureExtractor",HelpText="Ngram feature extractor to use for characters (WordBag/WordHashBag).",ShortName="charExtractor",NullName="<None>",SortOrder=12)]
Copy file name to clipboardExpand all lines: test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv
+1-1
Original file line number
Diff line number
Diff line change
@@ -126,7 +126,7 @@ Transforms.Scorer Turn the predictor model into a transform model Microsoft.ML.E
126
126
Transforms.SegregatorUn-groups vector columns into sequences of rows, inverse of Group transformMicrosoft.ML.Transforms.GroupingOperationsUngroupMicrosoft.ML.Transforms.UngroupTransform+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
127
127
Transforms.SentimentAnalyzerUses a pretrained sentiment model to score input stringsMicrosoft.ML.Transforms.Text.TextAnalyticsAnalyzeSentimentMicrosoft.ML.Transforms.Text.SentimentAnalyzingTransformer+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
128
128
Transforms.TensorFlowScorerTransforms the data using the TensorFlow model.Microsoft.ML.Transforms.TensorFlowTransformerTensorFlowScorerMicrosoft.ML.Transforms.TensorFlowEstimator+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
129
-
Transforms.TextFeaturizerA transform that turns a collection of text documents into numerical feature vectors. The feature vectors are normalized counts of (word and/or character) ngrams in a given tokenized text.Microsoft.ML.Transforms.Text.TextAnalyticsTextTransformMicrosoft.ML.Transforms.Text.TextFeaturizingEstimator+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
129
+
Transforms.TextFeaturizerA transform that turns a collection of text documents into numerical feature vectors. The feature vectors are normalized counts of (word and/or character) ngrams in a given tokenized text.Microsoft.ML.Transforms.Text.TextAnalyticsTextTransformMicrosoft.ML.Transforms.Text.TextFeaturizingEstimator+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
130
130
Transforms.TextToKeyConverterConverts input values (words, numbers, etc.) to index in a dictionary.Microsoft.ML.Transforms.CategoricalTextToKeyMicrosoft.ML.Transforms.ValueToKeyMappingTransformer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
131
131
Transforms.TrainTestDatasetSplitterSplit the dataset into train and test setsMicrosoft.ML.EntryPoints.TrainTestSplitSplitMicrosoft.ML.EntryPoints.TrainTestSplit+InputMicrosoft.ML.EntryPoints.TrainTestSplit+Output
132
132
Transforms.TreeLeafFeaturizerTrains a tree ensemble, or loads it from a file, then maps a numeric feature vector to three outputs: 1. A vector containing the individual tree outputs of the tree ensemble. 2. A vector indicating the leaves that the feature vector falls on in the tree ensemble. 3. A vector indicating the paths that the feature vector falls on in the tree ensemble. If a both a model file and a trainer are specified - will use the model file. If neither are specified, will train a default FastTree model. This can handle key labels by training a regression model towards their optionally permuted indices.Microsoft.ML.Data.TreeFeaturizeFeaturizerMicrosoft.ML.Data.TreeEnsembleFeaturizerTransform+ArgumentsForEntryPointMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
0 commit comments