|
| 1 | +using Microsoft.ML.Runtime.Data; |
| 2 | +using Microsoft.ML.Runtime.Learners; |
| 3 | +using Microsoft.ML.Trainers.HalLearners; |
| 4 | +using System; |
| 5 | +using System.Linq; |
| 6 | + |
| 7 | +namespace Microsoft.ML.Samples.Dynamic.PermutationFeatureImportance |
| 8 | +{ |
| 9 | + public class PfiHelper |
| 10 | + { |
| 11 | + public static IDataView GetHousingRegressionIDataView(MLContext mlContext, out string labelName, out string[] featureNames, bool binaryPrediction = false) |
| 12 | + { |
| 13 | + // Download the dataset from github.com/dotnet/machinelearning. |
| 14 | + // This will create a housing.txt file in the filesystem. |
| 15 | + // You can open this file to see the data. |
| 16 | + string dataFile = SamplesUtils.DatasetUtils.DownloadHousingRegressionDataset(); |
| 17 | + |
| 18 | + // Read the data as an IDataView. |
| 19 | + // First, we define the reader: specify the data columns and where to find them in the text file. |
| 20 | + // The data file is composed of rows of data, with each row having 11 numerical columns |
| 21 | + // separated by whitespace. |
| 22 | + var reader = mlContext.Data.CreateTextReader( |
| 23 | + columns: new[] |
| 24 | + { |
| 25 | + // Read the first column (indexed by 0) in the data file as an R4 (float) |
| 26 | + new TextLoader.Column("MedianHomeValue", DataKind.R4, 0), |
| 27 | + new TextLoader.Column("CrimesPerCapita", DataKind.R4, 1), |
| 28 | + new TextLoader.Column("PercentResidental", DataKind.R4, 2), |
| 29 | + new TextLoader.Column("PercentNonRetail", DataKind.R4, 3), |
| 30 | + new TextLoader.Column("CharlesRiver", DataKind.R4, 4), |
| 31 | + new TextLoader.Column("NitricOxides", DataKind.R4, 5), |
| 32 | + new TextLoader.Column("RoomsPerDwelling", DataKind.R4, 6), |
| 33 | + new TextLoader.Column("PercentPre40s", DataKind.R4, 7), |
| 34 | + new TextLoader.Column("EmploymentDistance", DataKind.R4, 8), |
| 35 | + new TextLoader.Column("HighwayDistance", DataKind.R4, 9), |
| 36 | + new TextLoader.Column("TaxRate", DataKind.R4, 10), |
| 37 | + new TextLoader.Column("TeacherRatio", DataKind.R4, 11), |
| 38 | + }, |
| 39 | + hasHeader: true |
| 40 | + ); |
| 41 | + |
| 42 | + // Read the data |
| 43 | + var data = reader.Read(dataFile); |
| 44 | + var labelColumn = "MedianHomeValue"; |
| 45 | + |
| 46 | + if (binaryPrediction) |
| 47 | + { |
| 48 | + labelColumn = nameof(BinaryOutputRow.AboveAverage); |
| 49 | + data = mlContext.Transforms.CustomMappingTransformer(GreaterThanAverage, null).Transform(data); |
| 50 | + data = mlContext.Transforms.DropColumns("MedianHomeValue").Fit(data).Transform(data); |
| 51 | + } |
| 52 | + |
| 53 | + labelName = labelColumn; |
| 54 | + featureNames = data.Schema.AsEnumerable() |
| 55 | + .Select(column => column.Name) // Get the column names |
| 56 | + .Where(name => name != labelColumn) // Drop the Label |
| 57 | + .ToArray(); |
| 58 | + |
| 59 | + return data; |
| 60 | + } |
| 61 | + |
| 62 | + // Define a class for all the input columns that we intend to consume. |
| 63 | + private class ContinuousInputRow |
| 64 | + { |
| 65 | + public float MedianHomeValue { get; set; } |
| 66 | + } |
| 67 | + |
| 68 | + // Define a class for all output columns that we intend to produce. |
| 69 | + private class BinaryOutputRow |
| 70 | + { |
| 71 | + public bool AboveAverage { get; set; } |
| 72 | + } |
| 73 | + |
| 74 | + // Define an Action to apply a custom mapping from one object to the other |
| 75 | + private readonly static Action<ContinuousInputRow, BinaryOutputRow> GreaterThanAverage = (input, output) |
| 76 | + => output.AboveAverage = input.MedianHomeValue > 22.6; |
| 77 | + |
| 78 | + public static float[] GetLinearModelWeights(OlsLinearRegressionModelParameters linearModel) |
| 79 | + { |
| 80 | + return linearModel.Weights.ToArray(); |
| 81 | + } |
| 82 | + |
| 83 | + public static float[] GetLinearModelWeights(LinearBinaryModelParameters linearModel) |
| 84 | + { |
| 85 | + return linearModel.Weights.ToArray(); |
| 86 | + } |
| 87 | + } |
| 88 | +} |
0 commit comments