diff --git a/src/Microsoft.ML.Data/Dirty/PredictorInterfaces.cs b/src/Microsoft.ML.Data/Dirty/PredictorInterfaces.cs index 905d91a89e..9428d8282d 100644 --- a/src/Microsoft.ML.Data/Dirty/PredictorInterfaces.cs +++ b/src/Microsoft.ML.Data/Dirty/PredictorInterfaces.cs @@ -208,7 +208,7 @@ internal interface IFeatureContributionMapper : IPredictor /// public interface ICalculateFeatureContribution : IPredictor { - FeatureContributionCalculator FeatureContributionClaculator { get; } + FeatureContributionCalculator FeatureContributionCalculator { get; } } /// diff --git a/src/Microsoft.ML.Data/Prediction/Calibrator.cs b/src/Microsoft.ML.Data/Prediction/Calibrator.cs index 9ae59ab19e..53f27840f0 100644 --- a/src/Microsoft.ML.Data/Prediction/Calibrator.cs +++ b/src/Microsoft.ML.Data/Prediction/Calibrator.cs @@ -216,7 +216,7 @@ public abstract class ValueMapperCalibratedPredictorBase : CalibratedPredictorBa ColumnType IValueMapperDist.DistType => NumberType.Float; bool ICanSavePfa.CanSavePfa => (_mapper as ICanSavePfa)?.CanSavePfa == true; - public FeatureContributionCalculator FeatureContributionClaculator => new FeatureContributionCalculator(this); + public FeatureContributionCalculator FeatureContributionCalculator => new FeatureContributionCalculator(this); bool ICanSaveOnnx.CanSaveOnnx(OnnxContext ctx) => (_mapper as ICanSaveOnnx)?.CanSaveOnnx(ctx) == true; diff --git a/src/Microsoft.ML.FastTree/FastTree.cs b/src/Microsoft.ML.FastTree/FastTree.cs index 1538a59dfe..18c61c4670 100644 --- a/src/Microsoft.ML.FastTree/FastTree.cs +++ b/src/Microsoft.ML.FastTree/FastTree.cs @@ -2845,7 +2845,7 @@ public abstract class TreeEnsembleModelParameters : /// and the score obtained by taking the opposite decision at the node corresponding to feature F1. This algorithm extends naturally to models with /// many decision trees. /// - public FeatureContributionCalculator FeatureContributionClaculator => new FeatureContributionCalculator(this); + public FeatureContributionCalculator FeatureContributionCalculator => new FeatureContributionCalculator(this); public TreeEnsembleModelParameters(IHostEnvironment env, string name, TreeEnsemble trainedEnsemble, int numFeatures, string innerArgs) : base(env, name) diff --git a/src/Microsoft.ML.FastTree/GamTrainer.cs b/src/Microsoft.ML.FastTree/GamTrainer.cs index 1c2601f383..4a2d6c4068 100644 --- a/src/Microsoft.ML.FastTree/GamTrainer.cs +++ b/src/Microsoft.ML.FastTree/GamTrainer.cs @@ -673,7 +673,7 @@ public abstract class GamModelParametersBase : ModelParametersBase, IValu /// For Generalized Additive Models (GAM), the contribution of a feature is equal to the shape function for the given feature evaluated at /// the feature value. /// - public FeatureContributionCalculator FeatureContributionClaculator => new FeatureContributionCalculator(this); + public FeatureContributionCalculator FeatureContributionCalculator => new FeatureContributionCalculator(this); private protected GamModelParametersBase(IHostEnvironment env, string name, int inputLength, Dataset trainSet, double meanEffect, double[][] binEffects, int[] featureMap) diff --git a/src/Microsoft.ML.StandardLearners/Standard/LinearModelParameters.cs b/src/Microsoft.ML.StandardLearners/Standard/LinearModelParameters.cs index 2c7286006c..07016fa9d6 100644 --- a/src/Microsoft.ML.StandardLearners/Standard/LinearModelParameters.cs +++ b/src/Microsoft.ML.StandardLearners/Standard/LinearModelParameters.cs @@ -103,7 +103,7 @@ public IEnumerator GetEnumerator() /// Used to determine the contribution of each feature to the score of an example by . /// For linear models, the contribution of a given feature is equal to the product of feature value times the corresponding weight. /// - public FeatureContributionCalculator FeatureContributionClaculator => new FeatureContributionCalculator(this); + public FeatureContributionCalculator FeatureContributionCalculator => new FeatureContributionCalculator(this); /// /// Constructs a new linear predictor.