diff --git a/src/Microsoft.ML.Data/Dirty/PredictorInterfaces.cs b/src/Microsoft.ML.Data/Dirty/PredictorInterfaces.cs
index 905d91a89e..9428d8282d 100644
--- a/src/Microsoft.ML.Data/Dirty/PredictorInterfaces.cs
+++ b/src/Microsoft.ML.Data/Dirty/PredictorInterfaces.cs
@@ -208,7 +208,7 @@ internal interface IFeatureContributionMapper : IPredictor
///
public interface ICalculateFeatureContribution : IPredictor
{
- FeatureContributionCalculator FeatureContributionClaculator { get; }
+ FeatureContributionCalculator FeatureContributionCalculator { get; }
}
///
diff --git a/src/Microsoft.ML.Data/Prediction/Calibrator.cs b/src/Microsoft.ML.Data/Prediction/Calibrator.cs
index 9ae59ab19e..53f27840f0 100644
--- a/src/Microsoft.ML.Data/Prediction/Calibrator.cs
+++ b/src/Microsoft.ML.Data/Prediction/Calibrator.cs
@@ -216,7 +216,7 @@ public abstract class ValueMapperCalibratedPredictorBase : CalibratedPredictorBa
ColumnType IValueMapperDist.DistType => NumberType.Float;
bool ICanSavePfa.CanSavePfa => (_mapper as ICanSavePfa)?.CanSavePfa == true;
- public FeatureContributionCalculator FeatureContributionClaculator => new FeatureContributionCalculator(this);
+ public FeatureContributionCalculator FeatureContributionCalculator => new FeatureContributionCalculator(this);
bool ICanSaveOnnx.CanSaveOnnx(OnnxContext ctx) => (_mapper as ICanSaveOnnx)?.CanSaveOnnx(ctx) == true;
diff --git a/src/Microsoft.ML.FastTree/FastTree.cs b/src/Microsoft.ML.FastTree/FastTree.cs
index 1538a59dfe..18c61c4670 100644
--- a/src/Microsoft.ML.FastTree/FastTree.cs
+++ b/src/Microsoft.ML.FastTree/FastTree.cs
@@ -2845,7 +2845,7 @@ public abstract class TreeEnsembleModelParameters :
/// and the score obtained by taking the opposite decision at the node corresponding to feature F1. This algorithm extends naturally to models with
/// many decision trees.
///
- public FeatureContributionCalculator FeatureContributionClaculator => new FeatureContributionCalculator(this);
+ public FeatureContributionCalculator FeatureContributionCalculator => new FeatureContributionCalculator(this);
public TreeEnsembleModelParameters(IHostEnvironment env, string name, TreeEnsemble trainedEnsemble, int numFeatures, string innerArgs)
: base(env, name)
diff --git a/src/Microsoft.ML.FastTree/GamTrainer.cs b/src/Microsoft.ML.FastTree/GamTrainer.cs
index 1c2601f383..4a2d6c4068 100644
--- a/src/Microsoft.ML.FastTree/GamTrainer.cs
+++ b/src/Microsoft.ML.FastTree/GamTrainer.cs
@@ -673,7 +673,7 @@ public abstract class GamModelParametersBase : ModelParametersBase, IValu
/// For Generalized Additive Models (GAM), the contribution of a feature is equal to the shape function for the given feature evaluated at
/// the feature value.
///
- public FeatureContributionCalculator FeatureContributionClaculator => new FeatureContributionCalculator(this);
+ public FeatureContributionCalculator FeatureContributionCalculator => new FeatureContributionCalculator(this);
private protected GamModelParametersBase(IHostEnvironment env, string name,
int inputLength, Dataset trainSet, double meanEffect, double[][] binEffects, int[] featureMap)
diff --git a/src/Microsoft.ML.StandardLearners/Standard/LinearModelParameters.cs b/src/Microsoft.ML.StandardLearners/Standard/LinearModelParameters.cs
index 2c7286006c..07016fa9d6 100644
--- a/src/Microsoft.ML.StandardLearners/Standard/LinearModelParameters.cs
+++ b/src/Microsoft.ML.StandardLearners/Standard/LinearModelParameters.cs
@@ -103,7 +103,7 @@ public IEnumerator GetEnumerator()
/// Used to determine the contribution of each feature to the score of an example by .
/// For linear models, the contribution of a given feature is equal to the product of feature value times the corresponding weight.
///
- public FeatureContributionCalculator FeatureContributionClaculator => new FeatureContributionCalculator(this);
+ public FeatureContributionCalculator FeatureContributionCalculator => new FeatureContributionCalculator(this);
///
/// Constructs a new linear predictor.