diff --git a/src/Microsoft.ML.StandardTrainers/Standard/PoissonRegression/PoissonRegression.cs b/src/Microsoft.ML.StandardTrainers/Standard/PoissonRegression/PoissonRegression.cs
index b7d5ce4edd..8eced48dd1 100644
--- a/src/Microsoft.ML.StandardTrainers/Standard/PoissonRegression/PoissonRegression.cs
+++ b/src/Microsoft.ML.StandardTrainers/Standard/PoissonRegression/PoissonRegression.cs
@@ -28,12 +28,30 @@ namespace Microsoft.ML.Trainers
/// The for training a Poisson regression model.
///
///
- /// Poisson regression is a parameterized regression method.
+ ///
+ ///
///
///
- ///
+ ///
+ ///
public sealed class LbfgsPoissonRegressionTrainer : LbfgsTrainerBase, PoissonRegressionModelParameters>
{
internal const string LoadNameValue = "PoissonRegression";
@@ -42,7 +60,8 @@ public sealed class LbfgsPoissonRegressionTrainer : LbfgsTrainerBase
- /// Options for the .
+ /// Options for the as used in
+ /// [LbfgsPoissonRegression(Options)](xref:Microsoft.ML.StandardTrainersCatalog.LbfgsPoissonRegression(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options)).
///
public sealed class Options : OptionsBase
{
diff --git a/src/Microsoft.ML.StandardTrainers/StandardTrainersCatalog.cs b/src/Microsoft.ML.StandardTrainers/StandardTrainersCatalog.cs
index 3a0a808cc1..09477bc6ac 100644
--- a/src/Microsoft.ML.StandardTrainers/StandardTrainersCatalog.cs
+++ b/src/Microsoft.ML.StandardTrainers/StandardTrainersCatalog.cs
@@ -573,11 +573,11 @@ public static LbfgsLogisticRegressionBinaryTrainer LbfgsLogisticRegression(this
}
///
- /// Predict a target using a linear regression model trained with the trainer.
+ /// Create , which predicts a target using a linear regression model.
///
/// The regression catalog trainer object.
- /// The name of the label column.
- /// The name of the feature column.
+ /// The name of the label column. The column data must be .
+ /// The name of the feature column. The column data must be a known-sized vector of .
/// The name of the example weight column (optional).
/// The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.
/// The L2 weight for regularization.
@@ -606,7 +606,7 @@ public static LbfgsPoissonRegressionTrainer LbfgsPoissonRegression(this Regressi
}
///
- /// Predict a target using a linear regression model trained with the and advanced options.
+ /// Create using advanced options, which predicts a target using a linear regression model.
///
/// The regression catalog trainer object.
/// Trainer options.