diff --git a/src/Microsoft.ML.StandardTrainers/Standard/PoissonRegression/PoissonRegression.cs b/src/Microsoft.ML.StandardTrainers/Standard/PoissonRegression/PoissonRegression.cs index b7d5ce4edd..8eced48dd1 100644 --- a/src/Microsoft.ML.StandardTrainers/Standard/PoissonRegression/PoissonRegression.cs +++ b/src/Microsoft.ML.StandardTrainers/Standard/PoissonRegression/PoissonRegression.cs @@ -28,12 +28,30 @@ namespace Microsoft.ML.Trainers /// The for training a Poisson regression model. /// /// - /// Poisson regression is a parameterized regression method. + /// + /// /// /// - /// + /// + /// public sealed class LbfgsPoissonRegressionTrainer : LbfgsTrainerBase, PoissonRegressionModelParameters> { internal const string LoadNameValue = "PoissonRegression"; @@ -42,7 +60,8 @@ public sealed class LbfgsPoissonRegressionTrainer : LbfgsTrainerBase - /// Options for the . + /// Options for the as used in + /// [LbfgsPoissonRegression(Options)](xref:Microsoft.ML.StandardTrainersCatalog.LbfgsPoissonRegression(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options)). /// public sealed class Options : OptionsBase { diff --git a/src/Microsoft.ML.StandardTrainers/StandardTrainersCatalog.cs b/src/Microsoft.ML.StandardTrainers/StandardTrainersCatalog.cs index 3a0a808cc1..09477bc6ac 100644 --- a/src/Microsoft.ML.StandardTrainers/StandardTrainersCatalog.cs +++ b/src/Microsoft.ML.StandardTrainers/StandardTrainersCatalog.cs @@ -573,11 +573,11 @@ public static LbfgsLogisticRegressionBinaryTrainer LbfgsLogisticRegression(this } /// - /// Predict a target using a linear regression model trained with the trainer. + /// Create , which predicts a target using a linear regression model. /// /// The regression catalog trainer object. - /// The name of the label column. - /// The name of the feature column. + /// The name of the label column. The column data must be . + /// The name of the feature column. The column data must be a known-sized vector of . /// The name of the example weight column (optional). /// The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model. /// The L2 weight for regularization. @@ -606,7 +606,7 @@ public static LbfgsPoissonRegressionTrainer LbfgsPoissonRegression(this Regressi } /// - /// Predict a target using a linear regression model trained with the and advanced options. + /// Create using advanced options, which predicts a target using a linear regression model. /// /// The regression catalog trainer object. /// Trainer options.