diff --git a/src/Microsoft.ML.FastTree/FastTreeArguments.cs b/src/Microsoft.ML.FastTree/FastTreeArguments.cs
index 08d9a828d4..9a206d442f 100644
--- a/src/Microsoft.ML.FastTree/FastTreeArguments.cs
+++ b/src/Microsoft.ML.FastTree/FastTreeArguments.cs
@@ -155,7 +155,8 @@ public Options()
public sealed partial class FastTreeTweedieTrainer
{
///
- /// Options for the .
+ /// Options for the as used in
+ /// [FastTreeTweedie(Options)](xref:Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options)).
///
[TlcModule.Component(Name = LoadNameValue, FriendlyName = UserNameValue, Desc = Summary)]
public sealed class Options : BoostedTreeOptions, IFastTreeTrainerFactory
diff --git a/src/Microsoft.ML.FastTree/FastTreeTweedie.cs b/src/Microsoft.ML.FastTree/FastTreeTweedie.cs
index a738e14134..7efa9424c0 100644
--- a/src/Microsoft.ML.FastTree/FastTreeTweedie.cs
+++ b/src/Microsoft.ML.FastTree/FastTreeTweedie.cs
@@ -30,12 +30,32 @@ namespace Microsoft.ML.Trainers.FastTree
/// This trainer is a generalization of Poisson, compound Poisson, and gamma regression.
///
///
- /// The Tweedie boosting model follows the mathematics established in
- /// Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models from Yang, Quan, and Zou.
+ /// from Yang, Quan, and Zou](https://arxiv.org/pdf/1508.06378.pdf).
/// For an introduction to Gradient Boosting, and more information, see:
- /// Wikipedia: Gradient boosting(Gradient tree boosting) or
- /// Greedy function approximation: A gradient boosting machine.
+ /// [Wikipedia: Gradient boosting(Gradient tree boosting)](https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting) or
+ /// [Greedy function approximation: A gradient boosting machine](https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451).
+ /// ]]>
+ ///
///
+ ///
+ ///
+ ///
public sealed partial class FastTreeTweedieTrainer
: BoostingFastTreeTrainerBase, FastTreeTweedieModelParameters>
{
diff --git a/src/Microsoft.ML.FastTree/TreeTrainersCatalog.cs b/src/Microsoft.ML.FastTree/TreeTrainersCatalog.cs
index 987abb2ac6..b989c11b4a 100644
--- a/src/Microsoft.ML.FastTree/TreeTrainersCatalog.cs
+++ b/src/Microsoft.ML.FastTree/TreeTrainersCatalog.cs
@@ -278,11 +278,11 @@ public static GamRegressionTrainer Gam(this RegressionCatalog.RegressionTrainers
}
///
- /// Predict a target using a decision tree regression model trained with the .
+ /// Create , which predicts a target using a decision tree regression model.
///
/// The .
- /// The name of the label column.
- /// The name of the feature column.
+ /// The name of the label column. The column data must be .
+ /// The name of the feature column. The column data must be a known-sized vector of .
/// The name of the example weight column (optional).
/// Total number of decision trees to create in the ensemble.
/// The maximum number of leaves per decision tree.
@@ -310,7 +310,7 @@ public static FastTreeTweedieTrainer FastTreeTweedie(this RegressionCatalog.Regr
}
///
- /// Predict a target using a decision tree regression model trained with the and advanced options.
+ /// Create using advanced options, which predicts a target using a decision tree regression model.
///
/// The .
/// Trainer options.