diff --git a/src/Microsoft.ML.FastTree/FastTreeArguments.cs b/src/Microsoft.ML.FastTree/FastTreeArguments.cs index 08d9a828d4..9a206d442f 100644 --- a/src/Microsoft.ML.FastTree/FastTreeArguments.cs +++ b/src/Microsoft.ML.FastTree/FastTreeArguments.cs @@ -155,7 +155,8 @@ public Options() public sealed partial class FastTreeTweedieTrainer { /// - /// Options for the . + /// Options for the as used in + /// [FastTreeTweedie(Options)](xref:Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options)). /// [TlcModule.Component(Name = LoadNameValue, FriendlyName = UserNameValue, Desc = Summary)] public sealed class Options : BoostedTreeOptions, IFastTreeTrainerFactory diff --git a/src/Microsoft.ML.FastTree/FastTreeTweedie.cs b/src/Microsoft.ML.FastTree/FastTreeTweedie.cs index a738e14134..7efa9424c0 100644 --- a/src/Microsoft.ML.FastTree/FastTreeTweedie.cs +++ b/src/Microsoft.ML.FastTree/FastTreeTweedie.cs @@ -30,12 +30,32 @@ namespace Microsoft.ML.Trainers.FastTree /// This trainer is a generalization of Poisson, compound Poisson, and gamma regression. /// /// - /// The Tweedie boosting model follows the mathematics established in - /// Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models from Yang, Quan, and Zou. + /// from Yang, Quan, and Zou](https://arxiv.org/pdf/1508.06378.pdf). /// For an introduction to Gradient Boosting, and more information, see: - /// Wikipedia: Gradient boosting(Gradient tree boosting) or - /// Greedy function approximation: A gradient boosting machine. + /// [Wikipedia: Gradient boosting(Gradient tree boosting)](https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting) or + /// [Greedy function approximation: A gradient boosting machine](https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451). + /// ]]> + /// /// + /// + /// + /// public sealed partial class FastTreeTweedieTrainer : BoostingFastTreeTrainerBase, FastTreeTweedieModelParameters> { diff --git a/src/Microsoft.ML.FastTree/TreeTrainersCatalog.cs b/src/Microsoft.ML.FastTree/TreeTrainersCatalog.cs index 987abb2ac6..b989c11b4a 100644 --- a/src/Microsoft.ML.FastTree/TreeTrainersCatalog.cs +++ b/src/Microsoft.ML.FastTree/TreeTrainersCatalog.cs @@ -278,11 +278,11 @@ public static GamRegressionTrainer Gam(this RegressionCatalog.RegressionTrainers } /// - /// Predict a target using a decision tree regression model trained with the . + /// Create , which predicts a target using a decision tree regression model. /// /// The . - /// The name of the label column. - /// The name of the feature column. + /// The name of the label column. The column data must be . + /// The name of the feature column. The column data must be a known-sized vector of . /// The name of the example weight column (optional). /// Total number of decision trees to create in the ensemble. /// The maximum number of leaves per decision tree. @@ -310,7 +310,7 @@ public static FastTreeTweedieTrainer FastTreeTweedie(this RegressionCatalog.Regr } /// - /// Predict a target using a decision tree regression model trained with the and advanced options. + /// Create using advanced options, which predicts a target using a decision tree regression model. /// /// The . /// Trainer options.