diff --git a/docs/api-reference/io-columns-anomaly-detection.md b/docs/api-reference/io-columns-anomaly-detection.md new file mode 100644 index 0000000000..1bcc6a2a9d --- /dev/null +++ b/docs/api-reference/io-columns-anomaly-detection.md @@ -0,0 +1,6 @@ +### Input and Output Columns +The input features column data must be a known-sized vector of . This trainer outputs the following columns: + +| Output Column Name | Column Type | Description| +| -- | -- | -- | +| `Score` | | The non-negative, unbounded score that was calculated by the anomaly detection model.| \ No newline at end of file diff --git a/docs/api-reference/io-columns-binary-classification.md b/docs/api-reference/io-columns-binary-classification.md index ae261b230b..59e49d7da6 100644 --- a/docs/api-reference/io-columns-binary-classification.md +++ b/docs/api-reference/io-columns-binary-classification.md @@ -1,8 +1,9 @@ ### Input and Output Columns -The input label column data must be . This trainer outputs the following columns: +The input label column data must be . +The input features column data must be a known-sized vector of . This trainer outputs the following columns: | Output Column Name | Column Type | Description| | -- | -- | -- | -| `Score` | | The unbounded score that was calculated by the trainer to determine the prediction.| -| `PredictedLabel` | | The label predicted by the trainer. `false` maps to negative score and `true` maps to positive score.| -| `Probability` | | The probability of having true as the label. Probability value is in range [0, 1].|| \ No newline at end of file +| `Score` | | The unbounded score that was calculated by the model.| +| `PredictedLabel` | | The predicted label, based on the sign of the score. A negative score maps to `false` and a positive score maps to `true`.| +| `Probability` | | The probability calculated by calibrating the score of having true as the label. Probability value is in range [0, 1].|| \ No newline at end of file diff --git a/src/Microsoft.ML.PCA/PCACatalog.cs b/src/Microsoft.ML.PCA/PCACatalog.cs index 3c1aafe6f7..05f98a6678 100644 --- a/src/Microsoft.ML.PCA/PCACatalog.cs +++ b/src/Microsoft.ML.PCA/PCACatalog.cs @@ -40,11 +40,12 @@ internal static PrincipalComponentAnalyzer ProjectToPrincipalComponents(this Tra => new PrincipalComponentAnalyzer(CatalogUtils.GetEnvironment(catalog), columns); /// - /// Trains an approximate principal component analysis (PCA) model using randomized SVD algorithm. + /// Create , which trains an approximate principal component analysis (PCA) model using randomized singular value decomposition (SVD) algorithm. /// /// The anomaly detection catalog trainer object. - /// The name of the feature column. - /// The name of the example weight column (optional). + /// The name of the feature column. The column data must be a known-sized vector of . + /// The name of the example weight column (optional). To use the weight column, the column data + /// must be of type . /// The number of components in the PCA. /// Oversampling parameter for randomized PCA training. /// If enabled, data is centered to be zero mean. @@ -69,7 +70,7 @@ public static RandomizedPcaTrainer RandomizedPca(this AnomalyDetectionCatalog.An } /// - /// Trains an approximate principal component analysis (PCA) model using randomized SVD algorithm. + /// Create with advanced options, which trains an approximate principal component analysis (PCA) model using randomized singular value decomposition (SVD) algorithm. /// /// The anomaly detection catalog trainer object. /// Advanced options to the algorithm. diff --git a/src/Microsoft.ML.PCA/PcaTrainer.cs b/src/Microsoft.ML.PCA/PcaTrainer.cs index 810bf1b5ea..cd2680fb88 100644 --- a/src/Microsoft.ML.PCA/PcaTrainer.cs +++ b/src/Microsoft.ML.PCA/PcaTrainer.cs @@ -33,12 +33,45 @@ namespace Microsoft.ML.Trainers // REVIEW: make RFF transformer an option here. /// - /// This trainer trains an approximate PCA using Randomized SVD algorithm - /// Reference: https://web.stanford.edu/group/mmds/slides2010/Martinsson.pdf + /// The for training an approximate PCA using Randomized SVD algorithm. /// /// - /// This PCA can be made into Kernel PCA by using Random Fourier Features transform + /// + /// to the data before passing it to the trainer. + /// ]]> + /// /// + /// + /// + /// public sealed class RandomizedPcaTrainer : TrainerEstimatorBase, PcaModelParameters> { internal const string LoadNameValue = "pcaAnomaly"; @@ -47,6 +80,10 @@ public sealed class RandomizedPcaTrainer : TrainerEstimatorBase + /// Options for the as used in + /// [RandomizedPca(Options)](xref:Microsoft.ML.PcaCatalog.RandomizedPca(Microsoft.ML.AnomalyDetectionCatalog.AnomalyDetectionTrainers,Microsoft.ML.Trainers.RandomizedPcaTrainer.Options)). + /// public sealed class Options : UnsupervisedTrainerInputBaseWithWeight { [Argument(ArgumentType.AtMostOnce, HelpText = "The number of components in the PCA", ShortName = "k", SortOrder = 50)]