forked from matplotlib/napari-matplotlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistogram.py
245 lines (196 loc) · 7.51 KB
/
histogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from typing import Any, cast
import napari
import numpy as np
import numpy.typing as npt
from matplotlib.container import BarContainer
from napari.layers import Image
from napari.layers._multiscale_data import MultiScaleData
from qtpy.QtWidgets import (
QComboBox,
QLabel,
QVBoxLayout,
QWidget,
)
from .base import SingleAxesWidget
from .features import FEATURES_LAYER_TYPES
from .util import Interval
__all__ = ["HistogramWidget", "FeaturesHistogramWidget"]
_COLORS = {"r": "tab:red", "g": "tab:green", "b": "tab:blue"}
def _get_bins(data: npt.NDArray[Any]) -> npt.NDArray[Any]:
if data.dtype.kind in {"i", "u"}:
# Make sure integer data types have integer sized bins
step = np.ceil(np.ptp(data) / 100)
return np.arange(np.min(data), np.max(data) + step, step)
else:
# For other data types, just have 100 evenly spaced bins
# (and 101 bin edges)
return np.linspace(np.min(data), np.max(data), 101)
class HistogramWidget(SingleAxesWidget):
"""
Display a histogram of the currently selected layer.
"""
n_layers_input = Interval(1, 1)
input_layer_types = (napari.layers.Image,)
def __init__(
self,
napari_viewer: napari.viewer.Viewer,
parent: QWidget | None = None,
):
super().__init__(napari_viewer, parent=parent)
self._update_layers(None)
self.viewer.events.theme.connect(self._on_napari_theme_changed)
def on_update_layers(self) -> None:
"""
Called when the selected layers are updated.
"""
super().on_update_layers()
for layer in self.viewer.layers:
layer.events.contrast_limits.connect(self._update_contrast_lims)
def _update_contrast_lims(self) -> None:
for lim, line in zip(
self.layers[0].contrast_limits, self._contrast_lines
):
line.set_xdata(lim)
self.figure.canvas.draw()
def draw(self) -> None:
"""
Clear the axes and histogram the currently selected layer/slice.
"""
layer: Image = self.layers[0]
data = layer.data
if isinstance(layer.data, MultiScaleData):
data = data[layer.data_level]
if layer.ndim - layer.rgb == 3:
# 3D data, can be single channel or RGB
# Slice in z dimension
data = data[self.current_z]
self.axes.set_title(f"z={self.current_z}")
# Read data into memory if it's a dask array
data = np.asarray(data)
# Important to calculate bins after slicing 3D data, to avoid reading
# whole cube into memory.
bins = _get_bins(data)
if layer.rgb:
# Histogram RGB channels independently
for i, c in enumerate("rgb"):
self.axes.hist(
data[..., i].ravel(),
bins=bins.tolist(),
label=c,
histtype="step",
color=_COLORS[c],
)
else:
self.axes.hist(data.ravel(), bins=bins.tolist(), label=layer.name)
self._contrast_lines = [
self.axes.axvline(lim, color="white")
for lim in layer.contrast_limits
]
self.axes.legend()
class FeaturesHistogramWidget(SingleAxesWidget):
"""
Display a histogram of selected feature attached to selected layer.
"""
n_layers_input = Interval(1, 1)
# All layers that have a .features attributes
input_layer_types = FEATURES_LAYER_TYPES
def __init__(
self,
napari_viewer: napari.viewer.Viewer,
parent: QWidget | None = None,
):
super().__init__(napari_viewer, parent=parent)
self.layout().addLayout(QVBoxLayout())
self._key_selection_widget = QComboBox()
self.layout().addWidget(QLabel("Key:"))
self.layout().addWidget(self._key_selection_widget)
self._key_selection_widget.currentTextChanged.connect(
self._set_axis_keys
)
self._update_layers(None)
@property
def x_axis_key(self) -> str | None:
"""Key to access x axis data from the FeaturesTable"""
return self._x_axis_key
@x_axis_key.setter
def x_axis_key(self, key: str | None) -> None:
self._x_axis_key = key
self._draw()
def _set_axis_keys(self, x_axis_key: str) -> None:
"""Set both axis keys and then redraw the plot"""
self._x_axis_key = x_axis_key
self._draw()
def _get_valid_axis_keys(self) -> list[str]:
"""
Get the valid axis keys from the layer FeatureTable.
Returns
-------
axis_keys : List[str]
The valid axis keys in the FeatureTable. If the table is empty
or there isn't a table, returns an empty list.
"""
if len(self.layers) == 0 or not (hasattr(self.layers[0], "features")):
return []
else:
return self.layers[0].features.keys()
def _get_data(self) -> tuple[npt.NDArray[Any] | None, str]:
"""Get the plot data.
Returns
-------
data : List[np.ndarray]
List contains X and Y columns from the FeatureTable. Returns
an empty array if nothing to plot.
x_axis_name : str
The title to display on the x axis. Returns
an empty string if nothing to plot.
"""
if not hasattr(self.layers[0], "features"):
# if the selected layer doesn't have a featuretable,
# skip draw
return None, ""
feature_table = self.layers[0].features
if (len(feature_table) == 0) or (self.x_axis_key is None):
return None, ""
data = feature_table[self.x_axis_key]
x_axis_name = self.x_axis_key.replace("_", " ")
return data, x_axis_name
def on_update_layers(self) -> None:
"""
Called when the layer selection changes by ``self.update_layers()``.
"""
# reset the axis keys
self._x_axis_key = None
# Clear combobox
self._key_selection_widget.clear()
self._key_selection_widget.addItems(self._get_valid_axis_keys())
def draw(self) -> None:
"""Clear the axes and histogram the currently selected layer/slice."""
# get the colormap from the layer depending on its type
if isinstance(self.layers[0], napari.layers.Points):
colormap = self.layers[0].face_colormap
self.layers[0].face_color = self.x_axis_key
elif isinstance(self.layers[0], napari.layers.Vectors):
colormap = self.layers[0].edge_colormap
self.layers[0].edge_color = self.x_axis_key
else:
colormap = None
# apply new colors to the layer
self.viewer.layers[self.layers[0].name].refresh_colors(True)
self.viewer.layers[self.layers[0].name].refresh()
# Draw the histogram
data, x_axis_name = self._get_data()
if data is None:
return
bins = _get_bins(data)
_, bins, patches = self.axes.hist(data, bins=bins.tolist())
patches = cast(BarContainer, patches)
# recolor the histogram plot
if colormap is not None:
self.bins_norm = (bins - bins.min()) / (bins.max() - bins.min())
colors = colormap.map(self.bins_norm)
# Set histogram style:
for idx, patch in enumerate(patches):
patch.set_facecolor(colors[idx])
# set ax labels
self.axes.set_xlabel(x_axis_name)
self.axes.set_ylabel("Counts [#]")