forked from esp8266/Arduino
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathServo.cpp
308 lines (257 loc) · 9.85 KB
/
Servo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
Copyright (c) 2015 Michael C. Miller. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(ESP8266)
#include <Arduino.h>
#include <Servo.h>
#define INVALID_SERVO 255 // flag indicating an invalid servo index
const uint32_t c_CycleCompensation = 4; // compensation us to trim adjust for digitalWrite delays
#define INVALID_PIN 63 // flag indicating never attached servo
struct ServoInfo {
uint8_t pin : 6; // a pin number from 0 to 62, 63 reserved
uint8_t isActive : 1; // true if this channel is enabled, pin not pulsed if false
uint8_t isDetaching : 1; // true if this channel is being detached, maintains pulse integrity
};
struct ServoState {
ServoInfo info;
volatile uint16_t usPulse;
};
#if !defined (SERVO_EXCLUDE_TIMER0)
ServoTimer0 s_servoTimer0;
#endif
#if !defined (SERVO_EXCLUDE_TIMER1)
ServoTimer1 s_servoTimer1;
#endif
static ServoState s_servos[MAX_SERVOS]; // static array of servo structures
static uint8_t s_servoCount = 0; // the total number of attached s_servos
// inconvenience macros
#define SERVO_INDEX_TO_TIMER(servoIndex) ((ServoTimerSequence)(servoIndex / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX(timerId, channel) ((timerId * SERVOS_PER_TIMER) + channel) // macro to access servo index by timer and channel
// similiar to map but will have increased accuracy that provides a more
// symetric api (call it and use result to reverse will provide the original value)
//
int improved_map(int value, int minIn, int maxIn, int minOut, int maxOut)
{
const int rangeIn = maxIn - minIn;
const int rangeOut = maxOut - minOut;
const int deltaIn = value - minIn;
// fixed point math constants to improve accurancy of divide and rounding
const int fixedHalfDecimal = 1;
const int fixedDecimal = fixedHalfDecimal * 2;
return ((deltaIn * rangeOut * fixedDecimal) / (rangeIn) + fixedHalfDecimal) / fixedDecimal + minOut;
}
//------------------------------------------------------------------------------
// Interrupt handler template method that takes a class that implements
// a standard set of methods for the timer abstraction
//------------------------------------------------------------------------------
template <class T>
static void Servo_Handler(T* timer) ICACHE_RAM_ATTR;
template <class T>
static void Servo_Handler(T* timer)
{
uint8_t servoIndex;
// clear interrupt
timer->ResetInterrupt();
if (timer->isEndOfCycle()) {
timer->StartCycle();
}
else {
servoIndex = SERVO_INDEX(timer->timerId(), timer->getCurrentChannel());
if (servoIndex < s_servoCount && s_servos[servoIndex].info.isActive) {
// pulse this channel low if activated
digitalWrite(s_servos[servoIndex].info.pin, LOW);
if (s_servos[servoIndex].info.isDetaching) {
s_servos[servoIndex].info.isActive = false;
s_servos[servoIndex].info.isDetaching = false;
}
}
timer->nextChannel();
}
servoIndex = SERVO_INDEX(timer->timerId(), timer->getCurrentChannel());
if (servoIndex < s_servoCount &&
timer->getCurrentChannel() < SERVOS_PER_TIMER) {
timer->SetPulseCompare(timer->usToTicks(s_servos[servoIndex].usPulse) - c_CycleCompensation);
if (s_servos[servoIndex].info.isActive) {
if (s_servos[servoIndex].info.isDetaching) {
// it was active, reset state and leave low
s_servos[servoIndex].info.isActive = false;
s_servos[servoIndex].info.isDetaching = false;
}
else {
// its an active channel so pulse it high
digitalWrite(s_servos[servoIndex].info.pin, HIGH);
}
}
}
else {
if (!isTimerActive(timer->timerId())) {
// no active running channels on this timer, stop the ISR
finISR(timer->timerId());
}
else {
// finished all channels so wait for the refresh period to expire before starting over
// allow a few ticks to ensure the next match is not missed
uint32_t refreshCompare = timer->usToTicks(REFRESH_INTERVAL);
if ((timer->GetCycleCount() + c_CycleCompensation * 2) < refreshCompare) {
timer->SetCycleCompare(refreshCompare - c_CycleCompensation);
}
else {
// at least REFRESH_INTERVAL has elapsed
timer->SetCycleCompare(timer->GetCycleCount() + c_CycleCompensation * 2);
}
}
timer->setEndOfCycle();
}
}
static void handler0() ICACHE_RAM_ATTR;
static void handler0()
{
Servo_Handler<ServoTimer0>(&s_servoTimer0);
}
static void handler1() ICACHE_RAM_ATTR;
static void handler1()
{
Servo_Handler<ServoTimer1>(&s_servoTimer1);
}
static void initISR(ServoTimerSequence timerId)
{
#if !defined (SERVO_EXCLUDE_TIMER0)
if (timerId == ServoTimerSequence_Timer0)
s_servoTimer0.InitInterrupt(&handler0);
#endif
#if !defined (SERVO_EXCLUDE_TIMER1)
if (timerId == ServoTimerSequence_Timer1)
s_servoTimer1.InitInterrupt(&handler1);
#endif
}
static void finISR(ServoTimerSequence timerId) ICACHE_RAM_ATTR;
static void finISR(ServoTimerSequence timerId)
{
#if !defined (SERVO_EXCLUDE_TIMER0)
if (timerId == ServoTimerSequence_Timer0)
s_servoTimer0.StopInterrupt();
#endif
#if !defined (SERVO_EXCLUDE_TIMER1)
if (timerId == ServoTimerSequence_Timer1)
s_servoTimer1.StopInterrupt();
#endif
}
// returns true if any servo is active on this timer
static boolean isTimerActive(ServoTimerSequence timerId) ICACHE_RAM_ATTR;
static boolean isTimerActive(ServoTimerSequence timerId)
{
for (uint8_t channel = 0; channel < SERVOS_PER_TIMER; channel++) {
if (s_servos[SERVO_INDEX(timerId, channel)].info.isActive) {
return true;
}
}
return false;
}
//-------------------------------------------------------------------
// Servo class methods
Servo::Servo()
{
if (s_servoCount < MAX_SERVOS) {
// assign a servo index to this instance
_servoIndex = s_servoCount++;
// store default values
s_servos[_servoIndex].usPulse = DEFAULT_PULSE_WIDTH;
// set default _minUs and _maxUs incase write() is called before attach()
_minUs = MIN_PULSE_WIDTH;
_maxUs = MAX_PULSE_WIDTH;
s_servos[_servoIndex].info.isActive = false;
s_servos[_servoIndex].info.isDetaching = false;
s_servos[_servoIndex].info.pin = INVALID_PIN;
}
else {
_servoIndex = INVALID_SERVO; // too many servos
}
}
uint8_t Servo::attach(int pin)
{
return attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, uint16_t minUs, uint16_t maxUs)
{
ServoTimerSequence timerId;
if (_servoIndex < MAX_SERVOS) {
if (s_servos[_servoIndex].info.pin == INVALID_PIN) {
pinMode(pin, OUTPUT); // set servo pin to output
digitalWrite(pin, LOW);
s_servos[_servoIndex].info.pin = pin;
}
// keep the min and max within 200-3000 us, these are extreme
// ranges and should support extreme servos while maintaining
// reasonable ranges
_maxUs = max((uint16_t)250, min((uint16_t)3000, maxUs));
_minUs = max((uint16_t)200, min(_maxUs, minUs));
// initialize the timerId if it has not already been initialized
timerId = SERVO_INDEX_TO_TIMER(_servoIndex);
if (!isTimerActive(timerId)) {
initISR(timerId);
}
s_servos[_servoIndex].info.isDetaching = false;
s_servos[_servoIndex].info.isActive = true; // this must be set after the check for isTimerActive
}
return _servoIndex;
}
void Servo::detach()
{
if (s_servos[_servoIndex].info.isActive) {
s_servos[_servoIndex].info.isDetaching = true;
}
}
void Servo::write(int value)
{
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if (value < MIN_PULSE_WIDTH) {
// assumed to be 0-180 degrees servo
value = constrain(value, 0, 180);
// writeMicroseconds will contrain the calculated value for us
// for any user defined min and max, but we must use default min max
value = improved_map(value, 0, 180, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
// ensure channel is valid
if ((_servoIndex < MAX_SERVOS)) {
// ensure pulse width is valid
value = constrain(value, _minUs, _maxUs);
s_servos[_servoIndex].usPulse = value;
}
}
int Servo::read() // return the value as degrees
{
// read returns the angle for an assumed 0-180, so we calculate using
// the normal min/max constants and not user defined ones
return improved_map(readMicroseconds(), MIN_PULSE_WIDTH, MAX_PULSE_WIDTH, 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if (_servoIndex != INVALID_SERVO) {
pulsewidth = s_servos[_servoIndex].usPulse;
}
else {
pulsewidth = 0;
}
return pulsewidth;
}
bool Servo::attached()
{
return s_servos[_servoIndex].info.isActive;
}
#endif