@@ -32,8 +32,8 @@ public void TrainAndPredictSentimentModelTest()
32
32
OutputTokens = true ,
33
33
StopWordsRemover = new PredefinedStopWordsRemover ( ) ,
34
34
VectorNormalizer = TextTransformTextNormKind . L2 ,
35
- CharFeatureExtractor = new NGramNgramExtractor ( ) { NgramLength = 2 , AllLengths = true } ,
36
- WordFeatureExtractor = new NGramNgramExtractor ( ) { NgramLength = 3 , AllLengths = false }
35
+ CharFeatureExtractor = new NGramNgramExtractor ( ) { NgramLength = 3 , AllLengths = false } ,
36
+ WordFeatureExtractor = new NGramNgramExtractor ( ) { NgramLength = 2 , AllLengths = true }
37
37
} ) ;
38
38
39
39
pipeline . Add ( new FastTreeBinaryClassifier ( ) { NumLeaves = 5 , NumTrees = 5 , MinDocumentsInLeafs = 2 } ) ;
@@ -65,16 +65,16 @@ public void TrainAndPredictSentimentModelTest()
65
65
var evaluator = new BinaryClassificationEvaluator ( ) ;
66
66
BinaryClassificationMetrics metrics = evaluator . Evaluate ( model , testData ) ;
67
67
68
- Assert . Equal ( .7222 , metrics . Accuracy , 4 ) ;
69
- Assert . Equal ( .9643 , metrics . Auc , 1 ) ;
70
- Assert . Equal ( .96 , metrics . Auprc , 2 ) ;
68
+ Assert . Equal ( .5556 , metrics . Accuracy , 4 ) ;
69
+ Assert . Equal ( .8 , metrics . Auc , 1 ) ;
70
+ Assert . Equal ( .87 , metrics . Auprc , 2 ) ;
71
71
Assert . Equal ( 1 , metrics . Entropy , 3 ) ;
72
- Assert . Equal ( .7826 , metrics . F1Score , 4 ) ;
73
- Assert . Equal ( .812 , metrics . LogLoss , 3 ) ;
74
- Assert . Equal ( 18.831 , metrics . LogLossReduction , 3 ) ;
72
+ Assert . Equal ( .6923 , metrics . F1Score , 4 ) ;
73
+ Assert . Equal ( .969 , metrics . LogLoss , 3 ) ;
74
+ Assert . Equal ( 3.083 , metrics . LogLossReduction , 3 ) ;
75
75
Assert . Equal ( 1 , metrics . NegativePrecision , 3 ) ;
76
- Assert . Equal ( .444 , metrics . NegativeRecall , 3 ) ;
77
- Assert . Equal ( .643 , metrics . PositivePrecision , 3 ) ;
76
+ Assert . Equal ( .111 , metrics . NegativeRecall , 3 ) ;
77
+ Assert . Equal ( .529 , metrics . PositivePrecision , 3 ) ;
78
78
Assert . Equal ( 1 , metrics . PositiveRecall ) ;
79
79
80
80
ConfusionMatrix matrix = metrics . ConfusionMatrix ;
@@ -88,10 +88,10 @@ public void TrainAndPredictSentimentModelTest()
88
88
Assert . Equal ( 0 , matrix [ 0 , 1 ] ) ;
89
89
Assert . Equal ( 0 , matrix [ "positive" , "negative" ] ) ;
90
90
91
- Assert . Equal ( 5 , matrix [ 1 , 0 ] ) ;
92
- Assert . Equal ( 5 , matrix [ "negative" , "positive" ] ) ;
93
- Assert . Equal ( 4 , matrix [ 1 , 1 ] ) ;
94
- Assert . Equal ( 4 , matrix [ "negative" , "negative" ] ) ;
91
+ Assert . Equal ( 8 , matrix [ 1 , 0 ] ) ;
92
+ Assert . Equal ( 8 , matrix [ "negative" , "positive" ] ) ;
93
+ Assert . Equal ( 1 , matrix [ 1 , 1 ] ) ;
94
+ Assert . Equal ( 1 , matrix [ "negative" , "negative" ] ) ;
95
95
}
96
96
97
97
public class SentimentData
0 commit comments