-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathinference.py
315 lines (298 loc) · 12.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import typing as t
from elastic_transport import ObjectApiResponse
from ._base import NamespacedClient
from .utils import (
SKIP_IN_PATH,
Stability,
_quote,
_rewrite_parameters,
_stability_warning,
)
class InferenceClient(NamespacedClient):
@_rewrite_parameters()
@_stability_warning(Stability.EXPERIMENTAL)
async def delete(
self,
*,
inference_id: str,
task_type: t.Optional[
t.Union[
str,
t.Literal["completion", "rerank", "sparse_embedding", "text_embedding"],
]
] = None,
dry_run: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
force: t.Optional[bool] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
Delete an inference endpoint
`<https://www.elastic.co/guide/en/elasticsearch/reference/8.16/delete-inference-api.html>`_
:param inference_id: The inference Id
:param task_type: The task type
:param dry_run: When true, the endpoint is not deleted, and a list of ingest
processors which reference this endpoint is returned
:param force: When true, the inference endpoint is forcefully deleted even if
it is still being used by ingest processors or semantic text fields
"""
if inference_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'inference_id'")
__path_parts: t.Dict[str, str]
if task_type not in SKIP_IN_PATH and inference_id not in SKIP_IN_PATH:
__path_parts = {
"task_type": _quote(task_type),
"inference_id": _quote(inference_id),
}
__path = f'/_inference/{__path_parts["task_type"]}/{__path_parts["inference_id"]}'
elif inference_id not in SKIP_IN_PATH:
__path_parts = {"inference_id": _quote(inference_id)}
__path = f'/_inference/{__path_parts["inference_id"]}'
else:
raise ValueError("Couldn't find a path for the given parameters")
__query: t.Dict[str, t.Any] = {}
if dry_run is not None:
__query["dry_run"] = dry_run
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if force is not None:
__query["force"] = force
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return await self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="inference.delete",
path_parts=__path_parts,
)
@_rewrite_parameters()
@_stability_warning(Stability.EXPERIMENTAL)
async def get(
self,
*,
task_type: t.Optional[
t.Union[
str,
t.Literal["completion", "rerank", "sparse_embedding", "text_embedding"],
]
] = None,
inference_id: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
Get an inference endpoint
`<https://www.elastic.co/guide/en/elasticsearch/reference/8.16/get-inference-api.html>`_
:param task_type: The task type
:param inference_id: The inference Id
"""
__path_parts: t.Dict[str, str]
if task_type not in SKIP_IN_PATH and inference_id not in SKIP_IN_PATH:
__path_parts = {
"task_type": _quote(task_type),
"inference_id": _quote(inference_id),
}
__path = f'/_inference/{__path_parts["task_type"]}/{__path_parts["inference_id"]}'
elif inference_id not in SKIP_IN_PATH:
__path_parts = {"inference_id": _quote(inference_id)}
__path = f'/_inference/{__path_parts["inference_id"]}'
else:
__path_parts = {}
__path = "/_inference"
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return await self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="inference.get",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("input", "query", "task_settings"),
)
@_stability_warning(Stability.EXPERIMENTAL)
async def inference(
self,
*,
inference_id: str,
input: t.Optional[t.Union[str, t.Sequence[str]]] = None,
task_type: t.Optional[
t.Union[
str,
t.Literal["completion", "rerank", "sparse_embedding", "text_embedding"],
]
] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
query: t.Optional[str] = None,
task_settings: t.Optional[t.Any] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
Perform inference on the service
`<https://www.elastic.co/guide/en/elasticsearch/reference/8.16/post-inference-api.html>`_
:param inference_id: The inference Id
:param input: Inference input. Either a string or an array of strings.
:param task_type: The task type
:param query: Query input, required for rerank task. Not required for other tasks.
:param task_settings: Optional task settings
:param timeout: Specifies the amount of time to wait for the inference request
to complete.
"""
if inference_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'inference_id'")
if input is None and body is None:
raise ValueError("Empty value passed for parameter 'input'")
__path_parts: t.Dict[str, str]
if task_type not in SKIP_IN_PATH and inference_id not in SKIP_IN_PATH:
__path_parts = {
"task_type": _quote(task_type),
"inference_id": _quote(inference_id),
}
__path = f'/_inference/{__path_parts["task_type"]}/{__path_parts["inference_id"]}'
elif inference_id not in SKIP_IN_PATH:
__path_parts = {"inference_id": _quote(inference_id)}
__path = f'/_inference/{__path_parts["inference_id"]}'
else:
raise ValueError("Couldn't find a path for the given parameters")
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if timeout is not None:
__query["timeout"] = timeout
if not __body:
if input is not None:
__body["input"] = input
if query is not None:
__body["query"] = query
if task_settings is not None:
__body["task_settings"] = task_settings
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return await self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="inference.inference",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_name="inference_config",
)
@_stability_warning(Stability.EXPERIMENTAL)
async def put(
self,
*,
inference_id: str,
inference_config: t.Optional[t.Mapping[str, t.Any]] = None,
body: t.Optional[t.Mapping[str, t.Any]] = None,
task_type: t.Optional[
t.Union[
str,
t.Literal["completion", "rerank", "sparse_embedding", "text_embedding"],
]
] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
Create an inference endpoint
`<https://www.elastic.co/guide/en/elasticsearch/reference/8.16/put-inference-api.html>`_
:param inference_id: The inference Id
:param inference_config:
:param task_type: The task type
"""
if inference_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'inference_id'")
if inference_config is None and body is None:
raise ValueError(
"Empty value passed for parameters 'inference_config' and 'body', one of them should be set."
)
elif inference_config is not None and body is not None:
raise ValueError("Cannot set both 'inference_config' and 'body'")
__path_parts: t.Dict[str, str]
if task_type not in SKIP_IN_PATH and inference_id not in SKIP_IN_PATH:
__path_parts = {
"task_type": _quote(task_type),
"inference_id": _quote(inference_id),
}
__path = f'/_inference/{__path_parts["task_type"]}/{__path_parts["inference_id"]}'
elif inference_id not in SKIP_IN_PATH:
__path_parts = {"inference_id": _quote(inference_id)}
__path = f'/_inference/{__path_parts["inference_id"]}'
else:
raise ValueError("Couldn't find a path for the given parameters")
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__body = inference_config if inference_config is not None else body
__headers = {"accept": "application/json", "content-type": "application/json"}
return await self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="inference.put",
path_parts=__path_parts,
)