@@ -80,192 +80,205 @@ using 4-fold cross validation.
80
80
(Required, string)
81
81
include::{docdir}/ml/ml-shared.asciidoc[tag=job-id-data-frame-analytics-define]
82
82
83
-
83
+ [role="child_attributes"]
84
84
[[ml-put-dfanalytics-request-body]]
85
85
==== {api-request-body-title}
86
86
87
87
`allow_lazy_start`::
88
88
(Optional, boolean)
89
89
include::{docdir}/ml/ml-shared.asciidoc[tag=allow-lazy-start]
90
90
91
+ //Begin analysis
91
92
`analysis`::
92
93
(Required, object)
93
94
The analysis configuration, which contains the information necessary to perform
94
95
one of the following types of analysis: {classification}, {oldetection}, or
95
96
{regression}.
96
-
97
- `analysis`.`classification`:::
97
+ +
98
+ .Properties of `analysis`
99
+ [%collapsible%open]
100
+ ====
101
+ //Begin classification
102
+ `classification`:::
98
103
(Required^*^, object)
99
104
The configuration information necessary to perform
100
105
{ml-docs}/dfa-classification.html[{classification}].
101
-
102
106
+
103
- --
104
107
TIP: Advanced parameters are for fine-tuning {classanalysis}. They are set
105
108
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>>
106
109
to give minimum validation error. It is highly recommended to use the default
107
110
values unless you fully understand the function of these parameters.
108
-
109
- --
110
-
111
- `analysis`.`classification`.`dependent_variable`::::
111
+ +
112
+ .Properties of `classification`
113
+ [%collapsible%open]
114
+ =====
115
+ `dependent_variable`::::
112
116
(Required, string)
113
117
+
114
- --
115
118
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable]
116
-
119
+ +
117
120
The data type of the field must be numeric (`integer`, `short`, `long`, `byte`),
118
121
categorical (`ip`, `keyword`, `text`), or boolean.
119
- --
120
122
121
- `analysis`.`classification`.` eta`::::
123
+ `eta`::::
122
124
(Optional, double)
123
125
include::{docdir}/ml/ml-shared.asciidoc[tag=eta]
124
126
125
- `analysis`.`classification`.` feature_bag_fraction`::::
127
+ `feature_bag_fraction`::::
126
128
(Optional, double)
127
129
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]
128
130
129
- `analysis`.`classification`.`max_trees`::::
130
- (Optional, integer)
131
- include::{docdir}/ml/ml-shared.asciidoc[tag=max-trees]
132
-
133
- `analysis`.`classification`.`gamma`::::
131
+ `gamma`::::
134
132
(Optional, double)
135
133
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma]
136
134
137
- `analysis`.`classification`.` lambda`::::
135
+ `lambda`::::
138
136
(Optional, double)
139
137
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda]
140
138
141
- `analysis`.`classification`.`class_assignment_objective `::::
142
- (Optional, string)
143
- include::{docdir}/ml/ml-shared.asciidoc[tag=class-assignment-objective ]
139
+ `max_trees `::::
140
+ (Optional, integer)
141
+ include::{docdir}/ml/ml-shared.asciidoc[tag=max-trees ]
144
142
145
- `analysis`.`classification`.` num_top_classes`::::
143
+ `num_top_classes`::::
146
144
(Optional, integer)
147
145
include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-classes]
148
146
149
- `analysis`.`classification`.`prediction_field_name`::::
150
- (Optional, string)
151
- include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
152
-
153
- `analysis`.`classification`.`randomize_seed`::::
154
- (Optional, long)
155
- include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
156
-
157
- `analysis`.`classification`.`num_top_feature_importance_values`::::
147
+ `num_top_feature_importance_values`::::
158
148
(Optional, integer)
159
149
Advanced configuration option. Specifies the maximum number of
160
150
{ml-docs}/dfa-classification.html#dfa-classification-feature-importance[feature
161
151
importance] values per document to return. By default, it is zero and no feature importance
162
152
calculation occurs.
163
153
164
- `analysis`.`classification`.`training_percent`::::
154
+ `prediction_field_name`::::
155
+ (Optional, string)
156
+ include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
157
+
158
+ `randomize_seed`::::
159
+ (Optional, long)
160
+ include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
161
+
162
+ `training_percent`::::
165
163
(Optional, integer)
166
164
include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent]
167
-
168
- `analysis`.`outlier_detection`:::
165
+ //End classification
166
+ =====
167
+ //Begin outlier_detection
168
+ `outlier_detection`:::
169
169
(Required^*^, object)
170
170
The configuration information necessary to perform
171
171
{ml-docs}/dfa-outlier-detection.html[{oldetection}]:
172
-
173
- `analysis`.`outlier_detection`.`compute_feature_influence`::::
172
+ +
173
+ .Properties of `outlier_detection`
174
+ [%collapsible%open]
175
+ =====
176
+ `compute_feature_influence`::::
174
177
(Optional, boolean)
175
178
include::{docdir}/ml/ml-shared.asciidoc[tag=compute-feature-influence]
176
-
177
- `analysis`.`outlier_detection`.` feature_influence_threshold`::::
179
+
180
+ `feature_influence_threshold`::::
178
181
(Optional, double)
179
182
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-influence-threshold]
180
183
181
- `analysis`.`outlier_detection`.` method`::::
184
+ `method`::::
182
185
(Optional, string)
183
186
include::{docdir}/ml/ml-shared.asciidoc[tag=method]
184
-
185
- `analysis`.`outlier_detection`.` n_neighbors`::::
187
+
188
+ `n_neighbors`::::
186
189
(Optional, integer)
187
190
include::{docdir}/ml/ml-shared.asciidoc[tag=n-neighbors]
188
-
189
- `analysis`.`outlier_detection`.` outlier_fraction`::::
191
+
192
+ `outlier_fraction`::::
190
193
(Optional, double)
191
194
include::{docdir}/ml/ml-shared.asciidoc[tag=outlier-fraction]
192
-
193
- `analysis`.`outlier_detection`.` standardization_enabled`::::
195
+
196
+ `standardization_enabled`::::
194
197
(Optional, boolean)
195
198
include::{docdir}/ml/ml-shared.asciidoc[tag=standardization-enabled]
196
-
197
- `analysis`.`regression`:::
199
+ //End outlier_detection
200
+ =====
201
+ //Begin regression
202
+ `regression`:::
198
203
(Required^*^, object)
199
204
The configuration information necessary to perform
200
205
{ml-docs}/dfa-regression.html[{regression}].
201
206
+
202
- --
203
207
TIP: Advanced parameters are for fine-tuning {reganalysis}. They are set
204
208
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>>
205
209
to give minimum validation error. It is highly recommended to use the default
206
210
values unless you fully understand the function of these parameters.
207
-
208
- --
209
-
210
- `analysis`.`regression`.`dependent_variable`::::
211
+ +
212
+ .Properties of `regression`
213
+ [%collapsible%open]
214
+ =====
215
+ `dependent_variable`::::
211
216
(Required, string)
212
217
+
213
- --
214
218
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable]
215
-
219
+ +
216
220
The data type of the field must be numeric.
217
- --
218
221
219
- `analysis`.`regression`.` eta`::::
222
+ `eta`::::
220
223
(Optional, double)
221
224
include::{docdir}/ml/ml-shared.asciidoc[tag=eta]
222
225
223
- `analysis`.`regression`.` feature_bag_fraction`::::
226
+ `feature_bag_fraction`::::
224
227
(Optional, double)
225
228
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]
226
229
227
- `analysis`.`regression`.`max_trees`::::
228
- (Optional, integer)
229
- include::{docdir}/ml/ml-shared.asciidoc[tag=max-trees]
230
-
231
- `analysis`.`regression`.`gamma`::::
230
+ `gamma`::::
232
231
(Optional, double)
233
232
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma]
234
233
235
- `analysis`.`regression`.` lambda`::::
234
+ `lambda`::::
236
235
(Optional, double)
237
236
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda]
238
237
239
- `analysis`.`regression`.`prediction_field_name `::::
240
- (Optional, string)
241
- include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name ]
238
+ `max_trees `::::
239
+ (Optional, integer)
240
+ include::{docdir}/ml/ml-shared.asciidoc[tag=max-trees ]
242
241
243
- `analysis`.`regression`.` num_top_feature_importance_values`::::
242
+ `num_top_feature_importance_values`::::
244
243
(Optional, integer)
245
244
Advanced configuration option. Specifies the maximum number of
246
245
{ml-docs}/dfa-regression.html#dfa-regression-feature-importance[feature importance]
247
- values per document to return. By default, it is zero and no feature importance calculation
248
- occurs.
246
+ values per document to return. By default, it is zero and no feature importance
247
+ calculation occurs.
249
248
250
- `analysis`.`regression`.`training_percent `::::
251
- (Optional, integer )
252
- include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent ]
249
+ `prediction_field_name `::::
250
+ (Optional, string )
251
+ include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name ]
253
252
254
- `analysis`.`regression`.` randomize_seed`::::
253
+ `randomize_seed`::::
255
254
(Optional, long)
256
255
include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
257
-
256
+
257
+ `training_percent`::::
258
+ (Optional, integer)
259
+ include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent]
260
+ =====
261
+ //End regression
262
+ ====
263
+ //End analysis
264
+
265
+ //Begin analyzed_fields
258
266
`analyzed_fields`::
259
267
(Optional, object)
260
268
include::{docdir}/ml/ml-shared.asciidoc[tag=analyzed-fields]
261
-
262
- `analyzed_fields`.`excludes`:::
269
+ +
270
+ .Properties of `analyzed_fields`
271
+ [%collapsible%open]
272
+ ====
273
+ `excludes`:::
263
274
(Optional, array)
264
275
include::{docdir}/ml/ml-shared.asciidoc[tag=analyzed-fields-excludes]
265
276
266
- `analyzed_fields`.` includes`:::
267
- (Optional, array)
277
+ `includes`:::
278
+ (Optional, array)
268
279
include::{docdir}/ml/ml-shared.asciidoc[tag=analyzed-fields-includes]
280
+ //End analyzed_fields
281
+ ====
269
282
270
283
`description`::
271
284
(Optional, string)
0 commit comments