@@ -80,190 +80,209 @@ using 4-fold cross validation.
80
80
(Required, string)
81
81
include::{docdir}/ml/ml-shared.asciidoc[tag=job-id-data-frame-analytics-define]
82
82
83
+ [role="child_attributes"]
83
84
[[ml-put-dfanalytics-request-body]]
84
85
==== {api-request-body-title}
85
86
86
87
`allow_lazy_start`::
87
88
(Optional, boolean)
88
89
include::{docdir}/ml/ml-shared.asciidoc[tag=allow-lazy-start]
89
90
91
+ //Begin analysis
90
92
`analysis`::
91
93
(Required, object)
92
94
The analysis configuration, which contains the information necessary to perform
93
95
one of the following types of analysis: {classification}, {oldetection}, or
94
96
{regression}.
95
- //include::{docdir}/ml/ml-shared.asciidoc[tag=analysis]
96
-
97
- `analysis`.`classification`:::
97
+ +
98
+ .Properties of `analysis`
99
+ [%collapsible%open]
100
+ ====
101
+ //Begin classification
102
+ `classification`:::
98
103
(Required^*^, object)
99
104
The configuration information necessary to perform
100
105
{ml-docs}/dfa-classification.html[{classification}].
101
106
+
102
- --
103
107
TIP: Advanced parameters are for fine-tuning {classanalysis}. They are set
104
108
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>>
105
109
to give minimum validation error. It is highly recommended to use the default
106
110
values unless you fully understand the function of these parameters.
107
- --
111
+ +
112
+ .Properties of `classification`
113
+ [%collapsible%open]
114
+ =====
115
+ `class_assignment_objective`::::
116
+ (Optional, string)
117
+ include::{docdir}/ml/ml-shared.asciidoc[tag=class-assignment-objective]
108
118
109
- `analysis`.`classification`.` dependent_variable`::::
119
+ `dependent_variable`::::
110
120
(Required, string)
111
121
+
112
- --
113
122
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable]
114
-
123
+ +
115
124
The data type of the field must be numeric (`integer`, `short`, `long`, `byte`),
116
125
categorical (`ip`, `keyword`, `text`), or boolean.
117
- --
118
126
119
- `analysis`.`classification`.` eta`::::
127
+ `eta`::::
120
128
(Optional, double)
121
129
include::{docdir}/ml/ml-shared.asciidoc[tag=eta]
122
130
123
- `analysis`.`classification`.` feature_bag_fraction`::::
131
+ `feature_bag_fraction`::::
124
132
(Optional, double)
125
133
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]
126
134
127
- `analysis`.`classification`.`max_trees`::::
128
- (Optional, integer)
129
- include::{docdir}/ml/ml-shared.asciidoc[tag=max-trees]
130
-
131
- `analysis`.`classification`.`gamma`::::
135
+ `gamma`::::
132
136
(Optional, double)
133
137
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma]
134
138
135
- `analysis`.`classification`.` lambda`::::
139
+ `lambda`::::
136
140
(Optional, double)
137
141
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda]
138
142
139
- `analysis`.`classification`.`class_assignment_objective `::::
140
- (Optional, string)
141
- include::{docdir}/ml/ml-shared.asciidoc[tag=class-assignment-objective ]
143
+ `max_trees `::::
144
+ (Optional, integer)
145
+ include::{docdir}/ml/ml-shared.asciidoc[tag=max-trees ]
142
146
143
- `analysis`.`classification`.` num_top_classes`::::
147
+ `num_top_classes`::::
144
148
(Optional, integer)
145
149
include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-classes]
146
150
147
- `analysis`.`classification`.`prediction_field_name`::::
148
- (Optional, string)
149
- include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
150
-
151
- `analysis`.`classification`.`randomize_seed`::::
152
- (Optional, long)
153
- include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
154
-
155
- `analysis`.`classification`.`num_top_feature_importance_values`::::
151
+ `num_top_feature_importance_values`::::
156
152
(Optional, integer)
157
153
Advanced configuration option. Specifies the maximum number of
158
154
{ml-docs}/dfa-classification.html#dfa-classification-feature-importance[feature
159
155
importance] values per document to return. By default, it is zero and no feature importance
160
156
calculation occurs.
161
157
162
- `analysis`.`classification`.`training_percent`::::
158
+ `prediction_field_name`::::
159
+ (Optional, string)
160
+ include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
161
+
162
+ `randomize_seed`::::
163
+ (Optional, long)
164
+ include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
165
+
166
+ `training_percent`::::
163
167
(Optional, integer)
164
168
include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent]
165
-
166
- `analysis`.`outlier_detection`:::
169
+ //End classification
170
+ =====
171
+ //Begin outlier_detection
172
+ `outlier_detection`:::
167
173
(Required^*^, object)
168
174
The configuration information necessary to perform
169
175
{ml-docs}/dfa-outlier-detection.html[{oldetection}]:
170
-
171
- `analysis`.`outlier_detection`.`compute_feature_influence`::::
176
+ +
177
+ .Properties of `outlier_detection`
178
+ [%collapsible%open]
179
+ =====
180
+ `compute_feature_influence`::::
172
181
(Optional, boolean)
173
182
include::{docdir}/ml/ml-shared.asciidoc[tag=compute-feature-influence]
174
183
175
- `analysis`.`outlier_detection`.` feature_influence_threshold`::::
184
+ `feature_influence_threshold`::::
176
185
(Optional, double)
177
186
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-influence-threshold]
178
187
179
- `analysis`.`outlier_detection`.` method`::::
188
+ `method`::::
180
189
(Optional, string)
181
190
include::{docdir}/ml/ml-shared.asciidoc[tag=method]
182
191
183
- `analysis`.`outlier_detection`.` n_neighbors`::::
192
+ `n_neighbors`::::
184
193
(Optional, integer)
185
194
include::{docdir}/ml/ml-shared.asciidoc[tag=n-neighbors]
186
195
187
- `analysis`.`outlier_detection`.` outlier_fraction`::::
196
+ `outlier_fraction`::::
188
197
(Optional, double)
189
198
include::{docdir}/ml/ml-shared.asciidoc[tag=outlier-fraction]
190
199
191
- `analysis`.`outlier_detection`.` standardization_enabled`::::
200
+ `standardization_enabled`::::
192
201
(Optional, boolean)
193
202
include::{docdir}/ml/ml-shared.asciidoc[tag=standardization-enabled]
194
-
195
- `analysis`.`regression`:::
203
+ //End outlier_detection
204
+ =====
205
+ //Begin regression
206
+ `regression`:::
196
207
(Required^*^, object)
197
208
The configuration information necessary to perform
198
209
{ml-docs}/dfa-regression.html[{regression}].
199
210
+
200
- --
201
211
TIP: Advanced parameters are for fine-tuning {reganalysis}. They are set
202
212
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>>
203
213
to give minimum validation error. It is highly recommended to use the default
204
214
values unless you fully understand the function of these parameters.
205
-
206
- --
207
-
208
- `analysis`.`regression`.`dependent_variable`::::
215
+ +
216
+ .Properties of `regression`
217
+ [%collapsible%open]
218
+ =====
219
+ `dependent_variable`::::
209
220
(Required, string)
210
221
+
211
- --
212
222
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable]
213
-
223
+ +
214
224
The data type of the field must be numeric.
215
- --
216
225
217
- `analysis`.`regression`.` eta`::::
226
+ `eta`::::
218
227
(Optional, double)
219
228
include::{docdir}/ml/ml-shared.asciidoc[tag=eta]
220
229
221
- `analysis`.`regression`.` feature_bag_fraction`::::
230
+ `feature_bag_fraction`::::
222
231
(Optional, double)
223
232
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]
224
233
225
- `analysis`.`regression`.`max_trees`::::
226
- (Optional, integer)
227
- include::{docdir}/ml/ml-shared.asciidoc[tag=max-trees]
228
-
229
- `analysis`.`regression`.`gamma`::::
234
+ `gamma`::::
230
235
(Optional, double)
231
236
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma]
232
237
233
- `analysis`.`regression`.` lambda`::::
238
+ `lambda`::::
234
239
(Optional, double)
235
240
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda]
236
241
237
- `analysis`.`regression`.`prediction_field_name `::::
238
- (Optional, string)
239
- include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name ]
242
+ `max_trees `::::
243
+ (Optional, integer)
244
+ include::{docdir}/ml/ml-shared.asciidoc[tag=max-trees ]
240
245
241
- `analysis`.`regression`.` num_top_feature_importance_values`::::
246
+ `num_top_feature_importance_values`::::
242
247
(Optional, integer)
243
248
Advanced configuration option. Specifies the maximum number of
244
249
{ml-docs}/dfa-regression.html#dfa-regression-feature-importance[feature importance]
245
- values per document to return. By default, it is zero and no feature importance calculation
246
- occurs.
250
+ values per document to return. By default, it is zero and no feature importance
251
+ calculation occurs.
247
252
248
- `analysis`.`regression`.`training_percent `::::
249
- (Optional, integer )
250
- include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent ]
253
+ `prediction_field_name `::::
254
+ (Optional, string )
255
+ include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name ]
251
256
252
- `analysis`.`regression`.` randomize_seed`::::
257
+ `randomize_seed`::::
253
258
(Optional, long)
254
259
include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
255
-
260
+
261
+ `training_percent`::::
262
+ (Optional, integer)
263
+ include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent]
264
+ =====
265
+ //End regression
266
+ ====
267
+ //End analysis
268
+
269
+ //Begin analyzed_fields
256
270
`analyzed_fields`::
257
271
(Optional, object)
258
272
include::{docdir}/ml/ml-shared.asciidoc[tag=analyzed-fields]
259
-
260
- `analyzed_fields`.`excludes`:::
273
+ +
274
+ .Properties of `analyzed_fields`
275
+ [%collapsible%open]
276
+ ====
277
+ `excludes`:::
261
278
(Optional, array)
262
279
include::{docdir}/ml/ml-shared.asciidoc[tag=analyzed-fields-excludes]
263
280
264
- `analyzed_fields`.` includes`:::
281
+ `includes`:::
265
282
(Optional, array)
266
283
include::{docdir}/ml/ml-shared.asciidoc[tag=analyzed-fields-includes]
284
+ //End analyzed_fields
285
+ ====
267
286
268
287
`description`::
269
288
(Optional, string)
0 commit comments