|
21 | 21 | //[float]
|
22 | 22 | //=== New Features
|
23 | 23 |
|
24 |
| -[float] |
25 |
| -=== Enhancements |
26 |
| - |
27 |
| -Machine Learning:: |
28 |
| -* Synchronize long and short tests for periodicity {ml-pull}62[#62] |
29 |
| -* Improvements to trend modelling and periodicity testing for forecasting {ml-pull}7[#7] (issue: {ml-issue}5[#5]) |
30 |
| - |
31 |
| -[float] |
32 |
| -=== Bug Fixes |
33 |
| - |
34 |
| -Machine Learning:: |
35 |
| - |
36 |
| -* By-fields should respect model_plot_config.terms {ml-pull}86[#86] (issue: {ml-issue}30004[#30004]) |
37 |
| -* Function description for population lat_long results should be lat_long instead of mean {ml-pull}81[#81] (issue: {ml-issue}80[#80]) |
38 |
| -* Fix error causing us to overestimate effective history length {ml-pull}66[#66] (issue: {ml-issue}57[#57]) |
39 |
| -* Clearing JSON memory allocators {ml-pull}30[#30] (issue: {ml-issue}26[#26]) |
40 |
| -* Fix sparse data edge cases for periodicity testing {ml-pull}28[#28] (issue: {ml-issue}20[#20]) |
41 |
| -* Impose an absolute cutoff on the minimum variance {ml-pull}8[#8] (issue: {ml-issue}488[#488]) |
42 |
| -* Check accesses in bounds when clearing recycled models {ml-pull}79[#79] (issue: {ml-issue}76[#76]) |
43 |
| -* Set forecast progress to 100% and status finished in the case of insufficient history (data) {ml-pull}44[#44] |
44 |
| -* Add control message to start background persistence {ml-pull}19[#19] |
45 |
| -* Fail start up if state is missing {ml-pull}4[#4] |
46 |
| -* Do not log incorrect model memory limit {ml-pull}3[#3] |
| 24 | +//[float] |
| 25 | +//=== Enhancements |
47 | 26 |
|
48 | 27 | //[float]
|
49 | 28 | //=== Regressions
|
@@ -82,12 +61,29 @@ elasticsearch plugin.
|
82 | 61 | //[float]
|
83 | 62 | //=== New Features
|
84 | 63 |
|
85 |
| -//[float] |
86 |
| -//=== Enhancements |
| 64 | +[float] |
| 65 | +=== Enhancements |
| 66 | + |
| 67 | +Machine Learning:: |
| 68 | +* Synchronize long and short tests for periodicity {ml-pull}62[#62] |
| 69 | +* Improvements to trend modelling and periodicity testing for forecasting {ml-pull}7[#7] (issue: {ml-issue}5[#5]) |
87 | 70 |
|
88 | 71 | [float]
|
89 | 72 | === Bug Fixes
|
90 | 73 |
|
| 74 | +Machine Learning:: |
| 75 | +* By-fields should respect model_plot_config.terms {ml-pull}86[#86] (issue: {issue}30004[#30004]) |
| 76 | +* Function description for population lat_long results should be lat_long instead of mean {ml-pull}81[#81] (issue: {ml-issue}80[#80]) |
| 77 | +* Fix error causing us to overestimate effective history length {ml-pull}66[#66] (issue: {ml-issue}57[#57]) |
| 78 | +* Clearing JSON memory allocators {ml-pull}30[#30] (issue: {ml-issue}26[#26]) |
| 79 | +* Fix sparse data edge cases for periodicity testing {ml-pull}28[#28] (issue: {ml-issue}20[#20]) |
| 80 | +* Impose an absolute cutoff on the minimum variance {ml-pull}8[#8] (issue: {ml-issue}488[#488]) |
| 81 | +* Check accesses in bounds when clearing recycled models {ml-pull}79[#79] (issue: {ml-issue}76[#76]) |
| 82 | +* Set forecast progress to 100% and status finished in the case of insufficient history (data) {ml-pull}44[#44] |
| 83 | +* Add control message to start background persistence {ml-pull}19[#19] |
| 84 | +* Fail start up if state is missing {ml-pull}4[#4] |
| 85 | +* Do not log incorrect model memory limit {ml-pull}3[#3] |
| 86 | + |
91 | 87 | Security::
|
92 | 88 | * Reduces the number of object allocations made by {security} when resolving the indices and aliases for a request ({pull}30180[#30180])
|
93 | 89 | * Respects accept header on requests with no handler ({pull}30383[#30383])
|
|
0 commit comments