|
| 1 | +[role="xpack"] |
| 2 | +[testenv="basic"] |
| 3 | +[[search-aggregations-metrics-rate-aggregation]] |
| 4 | +=== Rate Aggregation |
| 5 | + |
| 6 | +A `rate` metrics aggregation can be used only inside a `date_histogram` and calculates a rate of documents or a field in each |
| 7 | +`date_histogram` bucket. |
| 8 | + |
| 9 | +==== Syntax |
| 10 | + |
| 11 | +A `rate` aggregation looks like this in isolation: |
| 12 | + |
| 13 | +[source,js] |
| 14 | +-------------------------------------------------- |
| 15 | +{ |
| 16 | + "rate": { |
| 17 | + "unit": "month", |
| 18 | + "field": "requests" |
| 19 | + } |
| 20 | +} |
| 21 | +-------------------------------------------------- |
| 22 | +// NOTCONSOLE |
| 23 | + |
| 24 | +The following request will group all sales records into monthly bucket and than convert the number of sales transaction in each bucket |
| 25 | +into per annual sales rate. |
| 26 | + |
| 27 | +[source,console] |
| 28 | +-------------------------------------------------- |
| 29 | +GET sales/_search |
| 30 | +{ |
| 31 | + "size": 0, |
| 32 | + "aggs": { |
| 33 | + "by_date": { |
| 34 | + "date_histogram": { |
| 35 | + "field": "date", |
| 36 | + "calendar_interval": "month" <1> |
| 37 | + }, |
| 38 | + "aggs": { |
| 39 | + "my_rate": { |
| 40 | + "rate": { |
| 41 | + "unit": "year" <2> |
| 42 | + } |
| 43 | + } |
| 44 | + } |
| 45 | + } |
| 46 | + } |
| 47 | +} |
| 48 | +-------------------------------------------------- |
| 49 | +// TEST[setup:sales] |
| 50 | +<1> Histogram is grouped by month. |
| 51 | +<2> But the rate is converted into annual rate. |
| 52 | + |
| 53 | +The response will return the annual rate of transaction in each bucket. Since there are 12 months per year, the annual rate will |
| 54 | +be automatically calculated by multiplying monthly rate by 12. |
| 55 | + |
| 56 | +[source,console-result] |
| 57 | +-------------------------------------------------- |
| 58 | +{ |
| 59 | + ... |
| 60 | + "aggregations" : { |
| 61 | + "by_date" : { |
| 62 | + "buckets" : [ |
| 63 | + { |
| 64 | + "key_as_string" : "2015/01/01 00:00:00", |
| 65 | + "key" : 1420070400000, |
| 66 | + "doc_count" : 3, |
| 67 | + "my_rate" : { |
| 68 | + "value" : 36.0 |
| 69 | + } |
| 70 | + }, |
| 71 | + { |
| 72 | + "key_as_string" : "2015/02/01 00:00:00", |
| 73 | + "key" : 1422748800000, |
| 74 | + "doc_count" : 2, |
| 75 | + "my_rate" : { |
| 76 | + "value" : 24.0 |
| 77 | + } |
| 78 | + }, |
| 79 | + { |
| 80 | + "key_as_string" : "2015/03/01 00:00:00", |
| 81 | + "key" : 1425168000000, |
| 82 | + "doc_count" : 2, |
| 83 | + "my_rate" : { |
| 84 | + "value" : 24.0 |
| 85 | + } |
| 86 | + } |
| 87 | + ] |
| 88 | + } |
| 89 | + } |
| 90 | +} |
| 91 | +-------------------------------------------------- |
| 92 | +// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/] |
| 93 | + |
| 94 | +Instead of counting the number of documents, it is also possible to calculate a sum of all values of the fields in the documents in each |
| 95 | +bucket. The following request will group all sales records into monthly bucket and than calculate the total monthly sales and convert them |
| 96 | +into average daily sales. |
| 97 | + |
| 98 | +[source,console] |
| 99 | +-------------------------------------------------- |
| 100 | +GET sales/_search |
| 101 | +{ |
| 102 | + "size": 0, |
| 103 | + "aggs": { |
| 104 | + "by_date": { |
| 105 | + "date_histogram": { |
| 106 | + "field": "date", |
| 107 | + "calendar_interval": "month" <1> |
| 108 | + }, |
| 109 | + "aggs": { |
| 110 | + "avg_price": { |
| 111 | + "rate": { |
| 112 | + "field": "price", <2> |
| 113 | + "unit": "day" <3> |
| 114 | + } |
| 115 | + } |
| 116 | + } |
| 117 | + } |
| 118 | + } |
| 119 | +} |
| 120 | +-------------------------------------------------- |
| 121 | +// TEST[setup:sales] |
| 122 | +<1> Histogram is grouped by month. |
| 123 | +<2> Calculate sum of all sale prices |
| 124 | +<3> Convert to average daily sales |
| 125 | + |
| 126 | +The response will contain the average daily sale prices for each month. |
| 127 | + |
| 128 | +[source,console-result] |
| 129 | +-------------------------------------------------- |
| 130 | +{ |
| 131 | + ... |
| 132 | + "aggregations" : { |
| 133 | + "by_date" : { |
| 134 | + "buckets" : [ |
| 135 | + { |
| 136 | + "key_as_string" : "2015/01/01 00:00:00", |
| 137 | + "key" : 1420070400000, |
| 138 | + "doc_count" : 3, |
| 139 | + "avg_price" : { |
| 140 | + "value" : 17.741935483870968 |
| 141 | + } |
| 142 | + }, |
| 143 | + { |
| 144 | + "key_as_string" : "2015/02/01 00:00:00", |
| 145 | + "key" : 1422748800000, |
| 146 | + "doc_count" : 2, |
| 147 | + "avg_price" : { |
| 148 | + "value" : 2.142857142857143 |
| 149 | + } |
| 150 | + }, |
| 151 | + { |
| 152 | + "key_as_string" : "2015/03/01 00:00:00", |
| 153 | + "key" : 1425168000000, |
| 154 | + "doc_count" : 2, |
| 155 | + "avg_price" : { |
| 156 | + "value" : 12.096774193548388 |
| 157 | + } |
| 158 | + } |
| 159 | + ] |
| 160 | + } |
| 161 | + } |
| 162 | +} |
| 163 | +-------------------------------------------------- |
| 164 | +// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/] |
| 165 | + |
| 166 | + |
| 167 | +==== Relationship between bucket sizes and rate |
| 168 | + |
| 169 | +The `rate` aggregation supports all rate that can be used <<calendar_intervals,calendar_intervals parameter>> of `date_histogram` |
| 170 | +aggregation. The specified rate should compatible with the `date_histogram` aggregation interval, i.e. it should be possible to |
| 171 | +convert the bucket size into the rate. By default the interval of the `date_histogram` is used. |
| 172 | + |
| 173 | +`"rate": "second"`:: compatible with all intervals |
| 174 | +`"rate": "minute"`:: compatible with all intervals |
| 175 | +`"rate": "hour"`:: compatible with all intervals |
| 176 | +`"rate": "day"`:: compatible with all intervals |
| 177 | +`"rate": "week"`:: compatible with all intervals |
| 178 | +`"rate": "month"`:: compatible with only with `month`, `quarter` and `year` calendar intervals |
| 179 | +`"rate": "quarter"`:: compatible with only with `month`, `quarter` and `year` calendar intervals |
| 180 | +`"rate": "year"`:: compatible with only with `month`, `quarter` and `year` calendar intervals |
| 181 | + |
| 182 | +==== Script |
| 183 | + |
| 184 | +The `rate` aggregation also supports scripting. For example, if we need to adjust out prices before calculating rates, we could use |
| 185 | +a script to recalculate them on-the-fly: |
| 186 | + |
| 187 | +[source,console] |
| 188 | +-------------------------------------------------- |
| 189 | +GET sales/_search |
| 190 | +{ |
| 191 | + "size": 0, |
| 192 | + "aggs": { |
| 193 | + "by_date": { |
| 194 | + "date_histogram": { |
| 195 | + "field": "date", |
| 196 | + "calendar_interval": "month" |
| 197 | + }, |
| 198 | + "aggs": { |
| 199 | + "avg_price": { |
| 200 | + "rate": { |
| 201 | + "script": { <1> |
| 202 | + "lang": "painless", |
| 203 | + "source": "doc['price'].value * params.adjustment", |
| 204 | + "params": { |
| 205 | + "adjustment": 0.9 <2> |
| 206 | + } |
| 207 | + } |
| 208 | + } |
| 209 | + } |
| 210 | + } |
| 211 | + } |
| 212 | + } |
| 213 | +} |
| 214 | +-------------------------------------------------- |
| 215 | +// TEST[setup:sales] |
| 216 | + |
| 217 | +<1> The `field` parameter is replaced with a `script` parameter, which uses the |
| 218 | +script to generate values which percentiles are calculated on. |
| 219 | +<2> Scripting supports parameterized input just like any other script. |
| 220 | + |
| 221 | +[source,console-result] |
| 222 | +-------------------------------------------------- |
| 223 | +{ |
| 224 | + ... |
| 225 | + "aggregations" : { |
| 226 | + "by_date" : { |
| 227 | + "buckets" : [ |
| 228 | + { |
| 229 | + "key_as_string" : "2015/01/01 00:00:00", |
| 230 | + "key" : 1420070400000, |
| 231 | + "doc_count" : 3, |
| 232 | + "avg_price" : { |
| 233 | + "value" : 495.0 |
| 234 | + } |
| 235 | + }, |
| 236 | + { |
| 237 | + "key_as_string" : "2015/02/01 00:00:00", |
| 238 | + "key" : 1422748800000, |
| 239 | + "doc_count" : 2, |
| 240 | + "avg_price" : { |
| 241 | + "value" : 54.0 |
| 242 | + } |
| 243 | + }, |
| 244 | + { |
| 245 | + "key_as_string" : "2015/03/01 00:00:00", |
| 246 | + "key" : 1425168000000, |
| 247 | + "doc_count" : 2, |
| 248 | + "avg_price" : { |
| 249 | + "value" : 337.5 |
| 250 | + } |
| 251 | + } |
| 252 | + ] |
| 253 | + } |
| 254 | + } |
| 255 | +} |
| 256 | +-------------------------------------------------- |
| 257 | +// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/] |
0 commit comments