|
9 | 9 | },
|
10 | 10 | {
|
11 | 11 | "cell_type": "code",
|
12 |
| - "execution_count": 1, |
| 12 | + "execution_count": null, |
13 | 13 | "metadata": {},
|
14 | 14 | "outputs": [],
|
15 | 15 | "source": [
|
|
83 | 83 | },
|
84 | 84 | {
|
85 | 85 | "cell_type": "code",
|
86 |
| - "execution_count": 2, |
87 |
| - "metadata": {}, |
88 |
| - "outputs": [ |
89 |
| - { |
90 |
| - "name": "stdout", |
91 |
| - "output_type": "stream", |
92 |
| - "text": [ |
93 |
| - "0.2456\n" |
94 |
| - ] |
95 |
| - }, |
96 |
| - { |
97 |
| - "data": { |
98 |
| - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEBCAYAAACXArmGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEv9JREFUeJzt3X2QXXV9x/H3bhIhmgcwLEMQQ2sxX6iOxPLgTBGkhTpDfaCOIJXIgw5gBuloizJakgpWO30iWKqxDsjEmZRCC1VLIU5HdCQWUVHBjpjvMB2MxqQlE+kksQaSbPrHPfvjumb3nnv37j279P2aYdj7Pb+z53vP/nI/95yz9+zQwYMHkSQJYLjpBiRJM4ehIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSMbfpBmo4DDgN2A4caLgXSZot5gBLgW8Bz9RdaTaEwmnApqabkKRZ6kzga3UHz4ZQ2A7w9NM/Y3S0tzu6LlmygJ079/S1qX6wr+7YV3fsqzvPt76Gh4c48sgXQfUaWtdsCIUDAKOjB3sOhbH1ZyL76o59dce+uvM87aur0+5eaJYkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJU1PqcQkR8BTga2FeV3g38GrAamAd8PDM/WY09F1gLzAfuyszVVX0FcBuwCHgQWJWZ+/v3VKRmPLvvACMjCwe+3b3P7Gf3rp8PfLt6fusYChExBCwHjh97EY+IlwB3AqfQuqfGQ1VwPAncDrwO+DFwX0Scl5kbgQ3AFZn5cER8BrgS+NQ0PCdpoF4wbw5vuvYLA9/uvTedz+6Bb1XPd3WOFKL6/79FxBLgVmA38OXM/ClARNwNXAB8FXgiM5+s6huACyPicWB+Zj5cfa/1wI0YCpI0o9S5pnAk8ADwFuAcYBWwjF+8n8Z24Djg2C7rkqQZpOORQmZ+Hfj62OPq1M9a4KNtw4aAUVohc7CLem1LlizoZvgvaeKcbx321Z2Z2ldTOu2Pmbq/7Ks7g+yrzjWF1wKHZeYDVWkI+CGt+3SPOQbYBmztsl7bzp17er4p1MjIQnbsmHlnX+2rOzO5r6ZMtj9m8v6yr/p67Wt4eKinN9N1Th8dAfxVRBweEQuBy4B3AOdExEhEvBB4K/BF4BtARMQJETEHuBjYmJlbgL0RcUb1PS8BNnbdrSRpWnUMhcz8V+A+4LvAt4HbM/PfgeuBrwCPAndk5jczcy9wOXAP8DiwGbi7+lYrgZsjYjOwALilv09FkjRVtT6nkJlrgDXjancAdxxi7APAyYeoPwac3lubkqRB8BPNkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUzK07MCL+GjgqMy+PiBXAbcAi4EFgVWbuj4hlwAbgaCCBlZm5JyKOAP4eeBmwA3hbZv5Xn5+LJGmKah0pRMQ5wGVtpQ3ANZm5HBgCrqzq64B1mXki8Aiwpqp/FNiUmScBtwJ/04feJUl91jEUIuLFwMeAP6seHw/Mz8yHqyHrgQsjYh5wFnB3e736+g20jhQA/gE4rxovSZpB6hwpfBq4Hni6enwssL1t+XbgOOAoYFdm7h9X/4V1quW7gJEpdS5J6rtJrylExBXAjzPzgYi4vCoPAwfbhg0Bo4eoU9XHxrQbaltWy5IlC7oZ/ktGRhZOaf3pYl/dmal9NaXT/pip+8u+ujPIvjpdaL4IWBoRjwIvBhbQeuFf2jbmGGAb8BSwOCLmZOaBasy2asxPqnFbI2IusBDY2U2jO3fuYXR0fObUMzKykB07dve07nSyr+7M5L6aMtn+mMn7y77q67Wv4eGhnt5MT3r6KDN/JzNfmZkrgD8B/iUz3wnsjYgzqmGXABszcx+wiVaQAFwKbKy+vr96TLV8UzVekjSD1P6V1HFWArdGxCLgO8AtVf1q4LMRsRr4EfD2qr4GWB8R3wf+p1pfkjTD1A6FzFxP6zeKyMzHgNMPMWYLcPYh6j8F3txjj5KkAfETzZKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVMytMygiPgJcABwEPpOZayPiXGAtMB+4KzNXV2NXALcBi4AHgVWZuT8ilgEbgKOBBFZm5p5+PyFJUu86HilExOuA3wZeBZwK/EFEnAzcDpwPnAScFhHnVatsAK7JzOXAEHBlVV8HrMvME4FHgDX9fCKSpKnrGAqZ+VXgtzJzP613+XOBI4AnMvPJqr4BuDAijgfmZ+bD1errq/o84Czg7vZ6P5+IJGnqap0+ysx9EXEj8H7gn4Bjge1tQ7YDx01SPwrYVQVIe722JUsWdDP8l4yMLJzS+tPFvrozU/tqSqf9MVP3l311Z5B91QoFgMz8cET8BXAvsJzW9YUxQ8AorSOPOnWqem07d+5hdHT8t6hnZGQhO3bs7mnd6WRf3ZnJfTVlsv0xk/eXfdXXa1/Dw0M9vZmuc03hxOriMZn5v8A/A2cDS9uGHQNsA7ZOUH8KWBwRc6r60qouSZpB6vxK6suAWyPisIh4Aa2Ly58GIiJOqF7oLwY2ZuYWYG9EnFGte0lV3wdsAi6q6pcCG/v5RCRJU1fnQvP9wH3Ad4FvAw9l5p3A5cA9wOPAZp67iLwSuDkiNgMLgFuq+tXAVRHxOHAmsLp/T0OS1A91LzTfANwwrvYAcPIhxj4GnH6I+hZap50kSTOUn2iWJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpKLWH9mZ7Z7dd6CRP66+95n97N7184FvV1J/LVw0n8MPa+bl8tl9Bwa6vf8XofCCeXN407VfGPh2773pfHYPfKuS+u3ww+Y28hoCrdeRQfL0kSSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkopad0mNiA8Db6se3peZ10XEucBaYD5wV2aursauAG4DFgEPAqsyc39ELAM2AEcDCazMzD19fTaSpCnpeKRQvfi/Hng1sAI4JSLeDtwOnA+cBJwWEedVq2wArsnM5cAQcGVVXwesy8wTgUeANf18IpKkqatz+mg7cG1mPpuZ+4AfAMuBJzLzyczcTysILoyI44H5mflwte76qj4POAu4u73ev6chSeqHjqePMvP7Y19HxMtpnUb6W1phMWY7cBxw7AT1o4BdVYC01yVJM0jtv7wWEa8A7gM+AOyndbQwZggYpXXkcbBGnape25IlC7oZPmN0+jOgTfyZ0Drsa3ZwfvWXfdW/0HwGcA/wvsy8MyJeByxtG3IMsA3YOkH9KWBxRMzJzAPVmG3dNLpz5x5GR8fnSj1N/qB37Jj4D3KOjCycdHlT7Ks7zq/uzMa+mg6LXvbX8PBQT2+m61xofinweeDizLyzKn+jtShOiIg5wMXAxszcAuytQgTgkqq+D9gEXFTVLwU2dt2tJGla1TlSeD9wOLA2IsZqfwdcTuvo4XDgfp67iLwSuDUiFgHfAW6p6lcDn42I1cCPgLf3oX9JUh/VudD8XuC9Eyw++RDjHwNOP0R9C3B2l/1JkgbITzRLkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVIxt+7AiFgEPAS8MTN/GBHnAmuB+cBdmbm6GrcCuA1YBDwIrMrM/RGxDNgAHA0ksDIz9/T12UiSpqTWkUJEvAb4GrC8ejwfuB04HzgJOC0izquGbwCuyczlwBBwZVVfB6zLzBOBR4A1/XoSkqT+qHv66ErgPcC26vHpwBOZ+WRm7qcVBBdGxPHA/Mx8uBq3vqrPA84C7m6vT719SVI/1Tp9lJlXAETEWOlYYHvbkO3AcZPUjwJ2VQHSXpckzSC1rymMMwwcbHs8BIx2Uaeq17ZkyYLuu5wBRkYWTml5U+xrdnB+9Zd99R4KW4GlbY+PoXVqaaL6U8DiiJiTmQeqMdvows6dexgdHZ8r9TT5g96xY/eEy0ZGFk66vCn21R3nV3dmY19Nh0Uv+2t4eKinN9O9/krqN4CIiBMiYg5wMbAxM7cAeyPijGrcJVV9H7AJuKiqXwps7HHbkqRp0lMoZOZe4HLgHuBxYDPPXUReCdwcEZuBBcAtVf1q4KqIeBw4E1jde9uSpOnQ1emjzPyVtq8fAE4+xJjHaP120vj6FuDsrjuUJA2Mn2iWJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqRi7iA3FhEXA6uBecDHM/OTg9y+JGlyAztSiIiXAB8DXgusAK6KiF8f1PYlSZ0N8kjhXODLmflTgIi4G7gA+EiH9eYADA8PTWnjRx85f0rr96pT31N9XtPFvrrj/OrObOyrqZ8x9La/2taZ0816QwcPHux6Y72IiA8BL8rM1dXjK4DTM/OqDqu+Ftg03f1J0vPUmcDX6g4e5JHCMNCeQEPAaI31vkXrSW0HDkxDX5L0fDQHWErrNbS2QYbCVlov7mOOAbbVWO8Zukg5SVLxn92uMMhQ+BJwQ0SMAD8D3gp0OnUkSRqggf32UWb+BLge+ArwKHBHZn5zUNuXJHU2sAvNkqSZz080S5IKQ0GSVBgKkqTCUJAkFQO9IV6/dbrBXkSsAG4DFgEPAqsyc39ELAM2AEcDCazMzD0D7Ot84EZaH+B7EnhnZj4dEZcBfw78dzX0vsy8foB9fRh4F/B0Vbo1Mz850X4cRF/Vtte3DR8Bns7MV073/qq2vwh4CHhjZv5w3LJG5leNvhqZXzX6amR+TdZXk/Or2h9va/ve141b3sj8mrVHCjVvsLcBuCYzl9P6B3JlVV8HrMvME4FHgDWD6quanJ8C3pCZJwPfA26oFp8K/FFmrqj+6+cErLO/TgV+v237Yy/OE+3Hae8rMx8d6wf4TVovKKva+p2W/VX19hpaH5xcPsGQgc+vTn01Nb869dW2/YHOr059NTW/IuJc4PXAq2nN+1Mi4i3jhjUyv2ZtKNB2g73M/BkwdoM9ACLieGB+Zj5cldYDF0bEPOCsanypD6ovWu+G31N9bgNa/2iXVV+fBlwWEf8RERsi4sgB9gWtfwR/HBHfi4hPRMThE+3HAfc15kPAVzNz7BPu07m/oPWP8D0c4pP3Dc6vSfuiufnVqS9oZn7V6WvMIOfXduDazHw2M/cBP+C5n1Oj82s2h8KxtHbsmO3AcTWWHwXsajs8Hb/etPaVmTsz83MAETEf+CDw+baxfwq8Cvgx8IlB9RURC4DvAh8AfgM4gtY7kE77eVr7autvMa1PwN84bux07S8y84rMnOhmjE3Nr0n7anB+TdpXg/Or089xrL+Bzq/M/P7YC35EvJzWaaT724Y0Nr9m8zWFTjfYm2j5+DrUuzFfv/oCyiT8HPBYZn4WIDPf0rb8L+nhviW99lWdk/zdtu3fBNxOa6L2ciPDvvTV5h3A5zPzqbaep3N/ddLU/Kqlgfk1qQbnV12NzK+IeAVwH/CBzHyibVFj82s2HylspXUHwDHjb7A30fKngMURMXaP8aXUuzFfv/oiIpbSuh3494ArqtriiPjDtmFDQD8vtk3aV0Qsi4h3jdv+vk7rTXdfbX4PuHPswQD2VydNza+OGppfnXpqan7VNfD5FRFnAA8AHxwL7jaNza/ZHApfAs6JiJGIeCGtG+x9cWxhZm4B9lY7HuASYGN1/m4TcFFVvxTYOKi+qh/mvcA/Zub7MnMs9fcA11UXxQCuofVObyB9AT8H/jIifjUihmidg/3cRPtxgH1R9XMK8PW28nTvr0k1OL8m1eD86qSp+dVRE/MrIl5K67TexZl55/jlTc6vWRsKE91gLyLuj4hTq2ErgZsjYjOwALilql9N67dcHqd1O+/VA+zrzbTOqV4QEY9W/92WmQdonVf8VET8gNYkvW6CzfS9r8zcAbyb1gtK0npndFO1+kT7cdr7qoaNAM9m5t629aZ1f02k6flVo69G5lenvpqaX536qh42Mb/eDxwOrG37Oa2aCfPLG+JJkopZe6QgSeo/Q0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlS8X/Ba4xyC34TQAAAAABJRU5ErkJggg==\n", |
99 |
| - "text/plain": [ |
100 |
| - "<Figure size 432x288 with 1 Axes>" |
101 |
| - ] |
102 |
| - }, |
103 |
| - "metadata": { |
104 |
| - "needs_background": "light" |
105 |
| - }, |
106 |
| - "output_type": "display_data" |
107 |
| - } |
108 |
| - ], |
| 86 | + "execution_count": null, |
| 87 | + "metadata": {}, |
| 88 | + "outputs": [], |
109 | 89 | "source": [
|
110 | 90 | "# Solution: Calculate P(A,B)\n",
|
111 | 91 | "x_0 = np.random.binomial(2, 0.5, 10000)\n",
|
|
118 | 98 | },
|
119 | 99 | {
|
120 | 100 | "cell_type": "code",
|
121 |
| - "execution_count": 3, |
122 |
| - "metadata": {}, |
123 |
| - "outputs": [ |
124 |
| - { |
125 |
| - "data": { |
126 |
| - "text/plain": [ |
127 |
| - "0.2523537" |
128 |
| - ] |
129 |
| - }, |
130 |
| - "execution_count": 3, |
131 |
| - "metadata": {}, |
132 |
| - "output_type": "execute_result" |
133 |
| - } |
134 |
| - ], |
| 101 | + "execution_count": null, |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
135 | 104 | "source": [
|
136 | 105 | "# Solution: Calculate P(A)P(B)\n",
|
137 | 106 | "x_1 = np.random.binomial(1, 0.5, 10000)\n",
|
|
167 | 136 | },
|
168 | 137 | {
|
169 | 138 | "cell_type": "code",
|
170 |
| - "execution_count": 4, |
171 |
| - "metadata": {}, |
172 |
| - "outputs": [ |
173 |
| - { |
174 |
| - "data": { |
175 |
| - "text/plain": [ |
176 |
| - "0.724891534007516" |
177 |
| - ] |
178 |
| - }, |
179 |
| - "execution_count": 4, |
180 |
| - "metadata": {}, |
181 |
| - "output_type": "execute_result" |
182 |
| - } |
183 |
| - ], |
| 139 | + "execution_count": null, |
| 140 | + "metadata": {}, |
| 141 | + "outputs": [], |
184 | 142 | "source": [
|
185 | 143 | "# Import data & store lengths in a pandas series\n",
|
186 | 144 | "df_12 = pd.read_csv('../data/finch_beaks_2012.csv')\n",
|
|
201 | 159 | },
|
202 | 160 | {
|
203 | 161 | "cell_type": "code",
|
204 |
| - "execution_count": 5, |
205 |
| - "metadata": {}, |
206 |
| - "outputs": [ |
207 |
| - { |
208 |
| - "data": { |
209 |
| - "text/plain": [ |
210 |
| - "0.7239874466" |
211 |
| - ] |
212 |
| - }, |
213 |
| - "execution_count": 5, |
214 |
| - "metadata": {}, |
215 |
| - "output_type": "execute_result" |
216 |
| - } |
217 |
| - ], |
| 162 | + "execution_count": null, |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [], |
218 | 165 | "source": [
|
219 | 166 | "# Calculate P(A)P(B) using resampling methods\n",
|
220 | 167 | "n_samples = 100000\n",
|
|
232 | 179 | },
|
233 | 180 | {
|
234 | 181 | "cell_type": "code",
|
235 |
| - "execution_count": 6, |
236 |
| - "metadata": {}, |
237 |
| - "outputs": [ |
238 |
| - { |
239 |
| - "data": { |
240 |
| - "text/plain": [ |
241 |
| - "0.7242" |
242 |
| - ] |
243 |
| - }, |
244 |
| - "execution_count": 6, |
245 |
| - "metadata": {}, |
246 |
| - "output_type": "execute_result" |
247 |
| - } |
248 |
| - ], |
| 182 | + "execution_count": null, |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
249 | 185 | "source": [
|
250 | 186 | "# Calculate P(A,B) using resampling methods\n",
|
251 | 187 | "n_samples = 100000\n",
|
|
294 | 230 | },
|
295 | 231 | {
|
296 | 232 | "cell_type": "code",
|
297 |
| - "execution_count": 7, |
298 |
| - "metadata": {}, |
299 |
| - "outputs": [ |
300 |
| - { |
301 |
| - "data": { |
302 |
| - "text/plain": [ |
303 |
| - "0.8514056224899599" |
304 |
| - ] |
305 |
| - }, |
306 |
| - "execution_count": 7, |
307 |
| - "metadata": {}, |
308 |
| - "output_type": "execute_result" |
309 |
| - } |
310 |
| - ], |
| 233 | + "execution_count": null, |
| 234 | + "metadata": {}, |
| 235 | + "outputs": [], |
311 | 236 | "source": [
|
312 | 237 | "# Q1 Answer\n",
|
313 | 238 | "___"
|
314 | 239 | ]
|
315 | 240 | },
|
316 | 241 | {
|
317 | 242 | "cell_type": "code",
|
318 |
| - "execution_count": 8, |
319 |
| - "metadata": {}, |
320 |
| - "outputs": [ |
321 |
| - { |
322 |
| - "data": { |
323 |
| - "text/plain": [ |
324 |
| - "0.6942148760330579" |
325 |
| - ] |
326 |
| - }, |
327 |
| - "execution_count": 8, |
328 |
| - "metadata": {}, |
329 |
| - "output_type": "execute_result" |
330 |
| - } |
331 |
| - ], |
| 243 | + "execution_count": null, |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [], |
332 | 246 | "source": [
|
333 | 247 | "# Q2 Answer\n",
|
334 | 248 | "df_fortis = df_12.loc[df_12['species'] == 'fortis']\n",
|
|
337 | 251 | },
|
338 | 252 | {
|
339 | 253 | "cell_type": "code",
|
340 |
| - "execution_count": 9, |
341 |
| - "metadata": {}, |
342 |
| - "outputs": [ |
343 |
| - { |
344 |
| - "data": { |
345 |
| - "text/plain": [ |
346 |
| - "1.0" |
347 |
| - ] |
348 |
| - }, |
349 |
| - "execution_count": 9, |
350 |
| - "metadata": {}, |
351 |
| - "output_type": "execute_result" |
352 |
| - } |
353 |
| - ], |
| 254 | + "execution_count": null, |
| 255 | + "metadata": {}, |
| 256 | + "outputs": [], |
354 | 257 | "source": [
|
355 | 258 | "# Q3 Answer\n",
|
356 | 259 | "df_scandens = df_12.loc[df_12['species'] == 'scandens']\n",
|
|
415 | 318 | },
|
416 | 319 | {
|
417 | 320 | "cell_type": "code",
|
418 |
| - "execution_count": 10, |
| 321 | + "execution_count": null, |
419 | 322 | "metadata": {},
|
420 | 323 | "outputs": [],
|
421 | 324 | "source": [
|
|
428 | 331 | },
|
429 | 332 | {
|
430 | 333 | "cell_type": "code",
|
431 |
| - "execution_count": 11, |
| 334 | + "execution_count": null, |
432 | 335 | "metadata": {},
|
433 | 336 | "outputs": [],
|
434 | 337 | "source": [
|
|
440 | 343 | },
|
441 | 344 | {
|
442 | 345 | "cell_type": "code",
|
443 |
| - "execution_count": 12, |
444 |
| - "metadata": {}, |
445 |
| - "outputs": [ |
446 |
| - { |
447 |
| - "data": { |
448 |
| - "text/plain": [ |
449 |
| - "array([0.33718559])" |
450 |
| - ] |
451 |
| - }, |
452 |
| - "execution_count": 12, |
453 |
| - "metadata": {}, |
454 |
| - "output_type": "execute_result" |
455 |
| - } |
456 |
| - ], |
| 346 | + "execution_count": null, |
| 347 | + "metadata": {}, |
| 348 | + "outputs": [], |
457 | 349 | "source": [
|
458 | 350 | "# how many of those +ve tests were for users?\n",
|
459 | 351 | "_____ / (______ + _________)"
|
|
555 | 447 | ],
|
556 | 448 | "metadata": {
|
557 | 449 | "kernelspec": {
|
558 |
| - "display_name": "Python 3", |
| 450 | + "display_name": "bayesian-modelling-tutorial", |
559 | 451 | "language": "python",
|
560 |
| - "name": "python3" |
| 452 | + "name": "bayesian-modelling-tutorial" |
561 | 453 | },
|
562 | 454 | "language_info": {
|
563 | 455 | "codemirror_mode": {
|
|
569 | 461 | "name": "python",
|
570 | 462 | "nbconvert_exporter": "python",
|
571 | 463 | "pygments_lexer": "ipython3",
|
572 |
| - "version": "3.7.2" |
| 464 | + "version": "3.7.3" |
573 | 465 | }
|
574 | 466 | },
|
575 | 467 | "nbformat": 4,
|
|
0 commit comments