Skip to content

Commit 7974470

Browse files
committed
change kernels
1 parent 591dd28 commit 7974470

8 files changed

+1729
-940
lines changed

Diff for: notebooks/01a-instructor-probability-simulation.ipynb

+4-6
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@
8181
"cell_type": "markdown",
8282
"metadata": {},
8383
"source": [
84-
"* Let's say that a website has a CTR of 50%, i.e. that 50% of people click through. If we picked 1000 people at random from thepopulation, how likely would it be to find that a certain number of people click?\n",
84+
"* Let's say that a website has a CTR of 50%, i.e. that 50% of people click through. If we picked 1000 people at random from the population, how likely would it be to find that a certain number of people click?\n",
8585
"\n",
8686
"We can simulate this using `numpy`'s random number generator.\n",
8787
"\n",
@@ -755,8 +755,6 @@
755755
"cell_type": "markdown",
756756
"metadata": {},
757757
"source": [
758-
"___\n",
759-
"\n",
760758
"In the above, we saw that we could match data-generating processes with binary outcomes to the story of the binomial distribution.\n",
761759
"\n",
762760
"> The Binomial distribution's story is as follows: the number $r$ of successes in $n$ Bernoulli trials with probability $p$ of success, is Binomially distributed. \n",
@@ -1225,9 +1223,9 @@
12251223
],
12261224
"metadata": {
12271225
"kernelspec": {
1228-
"display_name": "Python 3",
1226+
"display_name": "bayesian-modelling-tutorial",
12291227
"language": "python",
1230-
"name": "python3"
1228+
"name": "bayesian-modelling-tutorial"
12311229
},
12321230
"language_info": {
12331231
"codemirror_mode": {
@@ -1239,7 +1237,7 @@
12391237
"name": "python",
12401238
"nbconvert_exporter": "python",
12411239
"pygments_lexer": "ipython3",
1242-
"version": "3.7.2"
1240+
"version": "3.7.3"
12431241
},
12441242
"toc-autonumbering": true
12451243
},

Diff for: notebooks/01a-student-probability-simulation.ipynb

+67-384
Large diffs are not rendered by default.

Diff for: notebooks/01b-instructor-joint-conditional-probability.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -552,9 +552,9 @@
552552
],
553553
"metadata": {
554554
"kernelspec": {
555-
"display_name": "Python 3",
555+
"display_name": "bayesian-modelling-tutorial",
556556
"language": "python",
557-
"name": "python3"
557+
"name": "bayesian-modelling-tutorial"
558558
},
559559
"language_info": {
560560
"codemirror_mode": {
@@ -566,7 +566,7 @@
566566
"name": "python",
567567
"nbconvert_exporter": "python",
568568
"pygments_lexer": "ipython3",
569-
"version": "3.7.2"
569+
"version": "3.7.3"
570570
}
571571
},
572572
"nbformat": 4,

Diff for: notebooks/01b-student-joint-conditional-probability.ipynb

+33-141
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
},
1010
{
1111
"cell_type": "code",
12-
"execution_count": 1,
12+
"execution_count": null,
1313
"metadata": {},
1414
"outputs": [],
1515
"source": [
@@ -83,29 +83,9 @@
8383
},
8484
{
8585
"cell_type": "code",
86-
"execution_count": 2,
87-
"metadata": {},
88-
"outputs": [
89-
{
90-
"name": "stdout",
91-
"output_type": "stream",
92-
"text": [
93-
"0.2456\n"
94-
]
95-
},
96-
{
97-
"data": {
98-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEBCAYAAACXArmGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEv9JREFUeJzt3X2QXXV9x/H3bhIhmgcwLEMQQ2sxX6iOxPLgTBGkhTpDfaCOIJXIgw5gBuloizJakgpWO30iWKqxDsjEmZRCC1VLIU5HdCQWUVHBjpjvMB2MxqQlE+kksQaSbPrHPfvjumb3nnv37j279P2aYdj7Pb+z53vP/nI/95yz9+zQwYMHkSQJYLjpBiRJM4ehIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSMbfpBmo4DDgN2A4caLgXSZot5gBLgW8Bz9RdaTaEwmnApqabkKRZ6kzga3UHz4ZQ2A7w9NM/Y3S0tzu6LlmygJ079/S1qX6wr+7YV3fsqzvPt76Gh4c48sgXQfUaWtdsCIUDAKOjB3sOhbH1ZyL76o59dce+uvM87aur0+5eaJYkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJU1PqcQkR8BTga2FeV3g38GrAamAd8PDM/WY09F1gLzAfuyszVVX0FcBuwCHgQWJWZ+/v3VKRmPLvvACMjCwe+3b3P7Gf3rp8PfLt6fusYChExBCwHjh97EY+IlwB3AqfQuqfGQ1VwPAncDrwO+DFwX0Scl5kbgQ3AFZn5cER8BrgS+NQ0PCdpoF4wbw5vuvYLA9/uvTedz+6Bb1XPd3WOFKL6/79FxBLgVmA38OXM/ClARNwNXAB8FXgiM5+s6huACyPicWB+Zj5cfa/1wI0YCpI0o9S5pnAk8ADwFuAcYBWwjF+8n8Z24Djg2C7rkqQZpOORQmZ+Hfj62OPq1M9a4KNtw4aAUVohc7CLem1LlizoZvgvaeKcbx321Z2Z2ldTOu2Pmbq/7Ks7g+yrzjWF1wKHZeYDVWkI+CGt+3SPOQbYBmztsl7bzp17er4p1MjIQnbsmHlnX+2rOzO5r6ZMtj9m8v6yr/p67Wt4eKinN9N1Th8dAfxVRBweEQuBy4B3AOdExEhEvBB4K/BF4BtARMQJETEHuBjYmJlbgL0RcUb1PS8BNnbdrSRpWnUMhcz8V+A+4LvAt4HbM/PfgeuBrwCPAndk5jczcy9wOXAP8DiwGbi7+lYrgZsjYjOwALilv09FkjRVtT6nkJlrgDXjancAdxxi7APAyYeoPwac3lubkqRB8BPNkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUzK07MCL+GjgqMy+PiBXAbcAi4EFgVWbuj4hlwAbgaCCBlZm5JyKOAP4eeBmwA3hbZv5Xn5+LJGmKah0pRMQ5wGVtpQ3ANZm5HBgCrqzq64B1mXki8Aiwpqp/FNiUmScBtwJ/04feJUl91jEUIuLFwMeAP6seHw/Mz8yHqyHrgQsjYh5wFnB3e736+g20jhQA/gE4rxovSZpB6hwpfBq4Hni6enwssL1t+XbgOOAoYFdm7h9X/4V1quW7gJEpdS5J6rtJrylExBXAjzPzgYi4vCoPAwfbhg0Bo4eoU9XHxrQbaltWy5IlC7oZ/ktGRhZOaf3pYl/dmal9NaXT/pip+8u+ujPIvjpdaL4IWBoRjwIvBhbQeuFf2jbmGGAb8BSwOCLmZOaBasy2asxPqnFbI2IusBDY2U2jO3fuYXR0fObUMzKykB07dve07nSyr+7M5L6aMtn+mMn7y77q67Wv4eGhnt5MT3r6KDN/JzNfmZkrgD8B/iUz3wnsjYgzqmGXABszcx+wiVaQAFwKbKy+vr96TLV8UzVekjSD1P6V1HFWArdGxCLgO8AtVf1q4LMRsRr4EfD2qr4GWB8R3wf+p1pfkjTD1A6FzFxP6zeKyMzHgNMPMWYLcPYh6j8F3txjj5KkAfETzZKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVMytMygiPgJcABwEPpOZayPiXGAtMB+4KzNXV2NXALcBi4AHgVWZuT8ilgEbgKOBBFZm5p5+PyFJUu86HilExOuA3wZeBZwK/EFEnAzcDpwPnAScFhHnVatsAK7JzOXAEHBlVV8HrMvME4FHgDX9fCKSpKnrGAqZ+VXgtzJzP613+XOBI4AnMvPJqr4BuDAijgfmZ+bD1errq/o84Czg7vZ6P5+IJGnqap0+ysx9EXEj8H7gn4Bjge1tQ7YDx01SPwrYVQVIe722JUsWdDP8l4yMLJzS+tPFvrozU/tqSqf9MVP3l311Z5B91QoFgMz8cET8BXAvsJzW9YUxQ8AorSOPOnWqem07d+5hdHT8t6hnZGQhO3bs7mnd6WRf3ZnJfTVlsv0xk/eXfdXXa1/Dw0M9vZmuc03hxOriMZn5v8A/A2cDS9uGHQNsA7ZOUH8KWBwRc6r60qouSZpB6vxK6suAWyPisIh4Aa2Ly58GIiJOqF7oLwY2ZuYWYG9EnFGte0lV3wdsAi6q6pcCG/v5RCRJU1fnQvP9wH3Ad4FvAw9l5p3A5cA9wOPAZp67iLwSuDkiNgMLgFuq+tXAVRHxOHAmsLp/T0OS1A91LzTfANwwrvYAcPIhxj4GnH6I+hZap50kSTOUn2iWJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpKLWH9mZ7Z7dd6CRP66+95n97N7184FvV1J/LVw0n8MPa+bl8tl9Bwa6vf8XofCCeXN407VfGPh2773pfHYPfKuS+u3ww+Y28hoCrdeRQfL0kSSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkopad0mNiA8Db6se3peZ10XEucBaYD5wV2aursauAG4DFgEPAqsyc39ELAM2AEcDCazMzD19fTaSpCnpeKRQvfi/Hng1sAI4JSLeDtwOnA+cBJwWEedVq2wArsnM5cAQcGVVXwesy8wTgUeANf18IpKkqatz+mg7cG1mPpuZ+4AfAMuBJzLzyczcTysILoyI44H5mflwte76qj4POAu4u73ev6chSeqHjqePMvP7Y19HxMtpnUb6W1phMWY7cBxw7AT1o4BdVYC01yVJM0jtv7wWEa8A7gM+AOyndbQwZggYpXXkcbBGnape25IlC7oZPmN0+jOgTfyZ0Drsa3ZwfvWXfdW/0HwGcA/wvsy8MyJeByxtG3IMsA3YOkH9KWBxRMzJzAPVmG3dNLpz5x5GR8fnSj1N/qB37Jj4D3KOjCycdHlT7Ks7zq/uzMa+mg6LXvbX8PBQT2+m61xofinweeDizLyzKn+jtShOiIg5wMXAxszcAuytQgTgkqq+D9gEXFTVLwU2dt2tJGla1TlSeD9wOLA2IsZqfwdcTuvo4XDgfp67iLwSuDUiFgHfAW6p6lcDn42I1cCPgLf3oX9JUh/VudD8XuC9Eyw++RDjHwNOP0R9C3B2l/1JkgbITzRLkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVIxt+7AiFgEPAS8MTN/GBHnAmuB+cBdmbm6GrcCuA1YBDwIrMrM/RGxDNgAHA0ksDIz9/T12UiSpqTWkUJEvAb4GrC8ejwfuB04HzgJOC0izquGbwCuyczlwBBwZVVfB6zLzBOBR4A1/XoSkqT+qHv66ErgPcC26vHpwBOZ+WRm7qcVBBdGxPHA/Mx8uBq3vqrPA84C7m6vT719SVI/1Tp9lJlXAETEWOlYYHvbkO3AcZPUjwJ2VQHSXpckzSC1rymMMwwcbHs8BIx2Uaeq17ZkyYLuu5wBRkYWTml5U+xrdnB+9Zd99R4KW4GlbY+PoXVqaaL6U8DiiJiTmQeqMdvows6dexgdHZ8r9TT5g96xY/eEy0ZGFk66vCn21R3nV3dmY19Nh0Uv+2t4eKinN9O9/krqN4CIiBMiYg5wMbAxM7cAeyPijGrcJVV9H7AJuKiqXwps7HHbkqRp0lMoZOZe4HLgHuBxYDPPXUReCdwcEZuBBcAtVf1q4KqIeBw4E1jde9uSpOnQ1emjzPyVtq8fAE4+xJjHaP120vj6FuDsrjuUJA2Mn2iWJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqRi7iA3FhEXA6uBecDHM/OTg9y+JGlyAztSiIiXAB8DXgusAK6KiF8f1PYlSZ0N8kjhXODLmflTgIi4G7gA+EiH9eYADA8PTWnjRx85f0rr96pT31N9XtPFvrrj/OrObOyrqZ8x9La/2taZ0816QwcPHux6Y72IiA8BL8rM1dXjK4DTM/OqDqu+Ftg03f1J0vPUmcDX6g4e5JHCMNCeQEPAaI31vkXrSW0HDkxDX5L0fDQHWErrNbS2QYbCVlov7mOOAbbVWO8Zukg5SVLxn92uMMhQ+BJwQ0SMAD8D3gp0OnUkSRqggf32UWb+BLge+ArwKHBHZn5zUNuXJHU2sAvNkqSZz080S5IKQ0GSVBgKkqTCUJAkFQO9IV6/dbrBXkSsAG4DFgEPAqsyc39ELAM2AEcDCazMzD0D7Ot84EZaH+B7EnhnZj4dEZcBfw78dzX0vsy8foB9fRh4F/B0Vbo1Mz850X4cRF/Vtte3DR8Bns7MV073/qq2vwh4CHhjZv5w3LJG5leNvhqZXzX6amR+TdZXk/Or2h9va/ve141b3sj8mrVHCjVvsLcBuCYzl9P6B3JlVV8HrMvME4FHgDWD6quanJ8C3pCZJwPfA26oFp8K/FFmrqj+6+cErLO/TgV+v237Yy/OE+3Hae8rMx8d6wf4TVovKKva+p2W/VX19hpaH5xcPsGQgc+vTn01Nb869dW2/YHOr059NTW/IuJc4PXAq2nN+1Mi4i3jhjUyv2ZtKNB2g73M/BkwdoM9ACLieGB+Zj5cldYDF0bEPOCsanypD6ovWu+G31N9bgNa/2iXVV+fBlwWEf8RERsi4sgB9gWtfwR/HBHfi4hPRMThE+3HAfc15kPAVzNz7BPu07m/oPWP8D0c4pP3Dc6vSfuiufnVqS9oZn7V6WvMIOfXduDazHw2M/cBP+C5n1Oj82s2h8KxtHbsmO3AcTWWHwXsajs8Hb/etPaVmTsz83MAETEf+CDw+baxfwq8Cvgx8IlB9RURC4DvAh8AfgM4gtY7kE77eVr7autvMa1PwN84bux07S8y84rMnOhmjE3Nr0n7anB+TdpXg/Or089xrL+Bzq/M/P7YC35EvJzWaaT724Y0Nr9m8zWFTjfYm2j5+DrUuzFfv/oCyiT8HPBYZn4WIDPf0rb8L+nhviW99lWdk/zdtu3fBNxOa6L2ciPDvvTV5h3A5zPzqbaep3N/ddLU/Kqlgfk1qQbnV12NzK+IeAVwH/CBzHyibVFj82s2HylspXUHwDHjb7A30fKngMURMXaP8aXUuzFfv/oiIpbSuh3494ArqtriiPjDtmFDQD8vtk3aV0Qsi4h3jdv+vk7rTXdfbX4PuHPswQD2VydNza+OGppfnXpqan7VNfD5FRFnAA8AHxwL7jaNza/ZHApfAs6JiJGIeCGtG+x9cWxhZm4B9lY7HuASYGN1/m4TcFFVvxTYOKi+qh/mvcA/Zub7MnMs9fcA11UXxQCuofVObyB9AT8H/jIifjUihmidg/3cRPtxgH1R9XMK8PW28nTvr0k1OL8m1eD86qSp+dVRE/MrIl5K67TexZl55/jlTc6vWRsKE91gLyLuj4hTq2ErgZsjYjOwALilql9N67dcHqd1O+/VA+zrzbTOqV4QEY9W/92WmQdonVf8VET8gNYkvW6CzfS9r8zcAbyb1gtK0npndFO1+kT7cdr7qoaNAM9m5t629aZ1f02k6flVo69G5lenvpqaX536qh42Mb/eDxwOrG37Oa2aCfPLG+JJkopZe6QgSeo/Q0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlS8X/Ba4xyC34TQAAAAABJRU5ErkJggg==\n",
99-
"text/plain": [
100-
"<Figure size 432x288 with 1 Axes>"
101-
]
102-
},
103-
"metadata": {
104-
"needs_background": "light"
105-
},
106-
"output_type": "display_data"
107-
}
108-
],
86+
"execution_count": null,
87+
"metadata": {},
88+
"outputs": [],
10989
"source": [
11090
"# Solution: Calculate P(A,B)\n",
11191
"x_0 = np.random.binomial(2, 0.5, 10000)\n",
@@ -118,20 +98,9 @@
11898
},
11999
{
120100
"cell_type": "code",
121-
"execution_count": 3,
122-
"metadata": {},
123-
"outputs": [
124-
{
125-
"data": {
126-
"text/plain": [
127-
"0.2523537"
128-
]
129-
},
130-
"execution_count": 3,
131-
"metadata": {},
132-
"output_type": "execute_result"
133-
}
134-
],
101+
"execution_count": null,
102+
"metadata": {},
103+
"outputs": [],
135104
"source": [
136105
"# Solution: Calculate P(A)P(B)\n",
137106
"x_1 = np.random.binomial(1, 0.5, 10000)\n",
@@ -167,20 +136,9 @@
167136
},
168137
{
169138
"cell_type": "code",
170-
"execution_count": 4,
171-
"metadata": {},
172-
"outputs": [
173-
{
174-
"data": {
175-
"text/plain": [
176-
"0.724891534007516"
177-
]
178-
},
179-
"execution_count": 4,
180-
"metadata": {},
181-
"output_type": "execute_result"
182-
}
183-
],
139+
"execution_count": null,
140+
"metadata": {},
141+
"outputs": [],
184142
"source": [
185143
"# Import data & store lengths in a pandas series\n",
186144
"df_12 = pd.read_csv('../data/finch_beaks_2012.csv')\n",
@@ -201,20 +159,9 @@
201159
},
202160
{
203161
"cell_type": "code",
204-
"execution_count": 5,
205-
"metadata": {},
206-
"outputs": [
207-
{
208-
"data": {
209-
"text/plain": [
210-
"0.7239874466"
211-
]
212-
},
213-
"execution_count": 5,
214-
"metadata": {},
215-
"output_type": "execute_result"
216-
}
217-
],
162+
"execution_count": null,
163+
"metadata": {},
164+
"outputs": [],
218165
"source": [
219166
"# Calculate P(A)P(B) using resampling methods\n",
220167
"n_samples = 100000\n",
@@ -232,20 +179,9 @@
232179
},
233180
{
234181
"cell_type": "code",
235-
"execution_count": 6,
236-
"metadata": {},
237-
"outputs": [
238-
{
239-
"data": {
240-
"text/plain": [
241-
"0.7242"
242-
]
243-
},
244-
"execution_count": 6,
245-
"metadata": {},
246-
"output_type": "execute_result"
247-
}
248-
],
182+
"execution_count": null,
183+
"metadata": {},
184+
"outputs": [],
249185
"source": [
250186
"# Calculate P(A,B) using resampling methods\n",
251187
"n_samples = 100000\n",
@@ -294,41 +230,19 @@
294230
},
295231
{
296232
"cell_type": "code",
297-
"execution_count": 7,
298-
"metadata": {},
299-
"outputs": [
300-
{
301-
"data": {
302-
"text/plain": [
303-
"0.8514056224899599"
304-
]
305-
},
306-
"execution_count": 7,
307-
"metadata": {},
308-
"output_type": "execute_result"
309-
}
310-
],
233+
"execution_count": null,
234+
"metadata": {},
235+
"outputs": [],
311236
"source": [
312237
"# Q1 Answer\n",
313238
"___"
314239
]
315240
},
316241
{
317242
"cell_type": "code",
318-
"execution_count": 8,
319-
"metadata": {},
320-
"outputs": [
321-
{
322-
"data": {
323-
"text/plain": [
324-
"0.6942148760330579"
325-
]
326-
},
327-
"execution_count": 8,
328-
"metadata": {},
329-
"output_type": "execute_result"
330-
}
331-
],
243+
"execution_count": null,
244+
"metadata": {},
245+
"outputs": [],
332246
"source": [
333247
"# Q2 Answer\n",
334248
"df_fortis = df_12.loc[df_12['species'] == 'fortis']\n",
@@ -337,20 +251,9 @@
337251
},
338252
{
339253
"cell_type": "code",
340-
"execution_count": 9,
341-
"metadata": {},
342-
"outputs": [
343-
{
344-
"data": {
345-
"text/plain": [
346-
"1.0"
347-
]
348-
},
349-
"execution_count": 9,
350-
"metadata": {},
351-
"output_type": "execute_result"
352-
}
353-
],
254+
"execution_count": null,
255+
"metadata": {},
256+
"outputs": [],
354257
"source": [
355258
"# Q3 Answer\n",
356259
"df_scandens = df_12.loc[df_12['species'] == 'scandens']\n",
@@ -415,7 +318,7 @@
415318
},
416319
{
417320
"cell_type": "code",
418-
"execution_count": 10,
321+
"execution_count": null,
419322
"metadata": {},
420323
"outputs": [],
421324
"source": [
@@ -428,7 +331,7 @@
428331
},
429332
{
430333
"cell_type": "code",
431-
"execution_count": 11,
334+
"execution_count": null,
432335
"metadata": {},
433336
"outputs": [],
434337
"source": [
@@ -440,20 +343,9 @@
440343
},
441344
{
442345
"cell_type": "code",
443-
"execution_count": 12,
444-
"metadata": {},
445-
"outputs": [
446-
{
447-
"data": {
448-
"text/plain": [
449-
"array([0.33718559])"
450-
]
451-
},
452-
"execution_count": 12,
453-
"metadata": {},
454-
"output_type": "execute_result"
455-
}
456-
],
346+
"execution_count": null,
347+
"metadata": {},
348+
"outputs": [],
457349
"source": [
458350
"# how many of those +ve tests were for users?\n",
459351
"_____ / (______ + _________)"
@@ -555,9 +447,9 @@
555447
],
556448
"metadata": {
557449
"kernelspec": {
558-
"display_name": "Python 3",
450+
"display_name": "bayesian-modelling-tutorial",
559451
"language": "python",
560-
"name": "python3"
452+
"name": "bayesian-modelling-tutorial"
561453
},
562454
"language_info": {
563455
"codemirror_mode": {
@@ -569,7 +461,7 @@
569461
"name": "python",
570462
"nbconvert_exporter": "python",
571463
"pygments_lexer": "ipython3",
572-
"version": "3.7.2"
464+
"version": "3.7.3"
573465
}
574466
},
575467
"nbformat": 4,

Diff for: notebooks/02-instructor-parameter-estimation.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -314,9 +314,9 @@
314314
],
315315
"metadata": {
316316
"kernelspec": {
317-
"display_name": "Python 3",
317+
"display_name": "bayesian-modelling-tutorial",
318318
"language": "python",
319-
"name": "python3"
319+
"name": "bayesian-modelling-tutorial"
320320
},
321321
"language_info": {
322322
"codemirror_mode": {
@@ -328,7 +328,7 @@
328328
"name": "python",
329329
"nbconvert_exporter": "python",
330330
"pygments_lexer": "ipython3",
331-
"version": "3.7.2"
331+
"version": "3.7.3"
332332
}
333333
},
334334
"nbformat": 4,

0 commit comments

Comments
 (0)