-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathtest.py
123 lines (110 loc) · 4.35 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import subprocess
from datetime import datetime
import pandas as pd
from feast import FeatureStore
from feast.data_source import PushMode
def run_demo():
try:
store = FeatureStore(repo_path=".")
print("\n--- Historical features for training ---")
fetch_historical_features_entity_df(store, for_batch_scoring=False)
print("\n--- Historical features for batch scoring ---")
fetch_historical_features_entity_df(store, for_batch_scoring=True)
print("\n--- Load features into online store ---")
store.materialize_incremental(end_date=datetime.now())
print("\n--- Online features ---")
fetch_online_features(store)
print("\n--- Online features retrieved (instead) through a feature service---")
fetch_online_features(store, source="feature_service")
print(
"\n--- Online features retrieved (using feature service v3, which uses a feature view with a push source---"
)
fetch_online_features(store, source="push")
print("\n--- Simulate a stream event ingestion of the hourly stats df ---")
event_df = pd.DataFrame.from_dict(
{
"driver_id": [1001],
"event_timestamp": [
datetime.now(),
],
"created": [
datetime.now(),
],
"conv_rate": [1.0],
"acc_rate": [1.0],
"avg_daily_trips": [1000],
}
)
print(event_df)
store.push("driver_stats_push_source", event_df, to=PushMode.ONLINE_AND_OFFLINE)
print("\n--- Online features again with updated values from a stream push---")
fetch_online_features(store, source="push")
except Exception as e:
print(f"An error occurred in run_demo: {e}")
def fetch_historical_features_entity_df(store: FeatureStore, for_batch_scoring: bool):
try:
entity_df = pd.DataFrame.from_dict(
{
"driver_id": [1001, 1002, 1003],
"event_timestamp": [
datetime(2021, 4, 12, 10, 59, 42),
datetime(2021, 4, 12, 8, 12, 10),
datetime(2021, 4, 12, 16, 40, 26),
],
"label_driver_reported_satisfaction": [1, 5, 3],
"val_to_add": [1, 2, 3],
"val_to_add_2": [10, 20, 30],
}
)
if for_batch_scoring:
entity_df["event_timestamp"] = pd.to_datetime("now", utc=True)
training_df = store.get_historical_features(
entity_df=entity_df,
features=[
"driver_hourly_stats:conv_rate",
"driver_hourly_stats:acc_rate",
"driver_hourly_stats:avg_daily_trips",
"transformed_conv_rate:conv_rate_plus_val1",
"transformed_conv_rate:conv_rate_plus_val2",
],
).to_df()
print(training_df.head())
except Exception as e:
print(f"An error occurred in fetch_historical_features_entity_df: {e}")
def fetch_online_features(store, source: str = ""):
try:
entity_rows = [
{
"driver_id": 1001,
"val_to_add": 1000,
"val_to_add_2": 2000,
},
{
"driver_id": 1002,
"val_to_add": 1001,
"val_to_add_2": 2002,
},
]
if source == "feature_service":
features_to_fetch = store.get_feature_service("driver_activity_v1")
elif source == "push":
features_to_fetch = store.get_feature_service("driver_activity_v3")
else:
features_to_fetch = [
"driver_hourly_stats:acc_rate",
"transformed_conv_rate:conv_rate_plus_val1",
"transformed_conv_rate:conv_rate_plus_val2",
]
returned_features = store.get_online_features(
features=features_to_fetch,
entity_rows=entity_rows,
).to_dict()
for key, value in sorted(returned_features.items()):
print(key, " : ", value)
except Exception as e:
print(f"An error occurred in fetch_online_features: {e}")
if __name__ == "__main__":
try:
run_demo()
except Exception as e:
print(f"An error occurred in the main block: {e}")