|
24 | 24 | find_common_type,
|
25 | 25 | construct_1d_object_array_from_listlike,
|
26 | 26 | construct_1d_ndarray_preserving_na,
|
27 |
| - construct_1d_arraylike_from_scalar) |
| 27 | + construct_1d_arraylike_from_scalar, |
| 28 | + astype_nansafe) |
28 | 29 | from pandas.core.dtypes.dtypes import (
|
29 | 30 | CategoricalDtype,
|
30 | 31 | DatetimeTZDtype,
|
@@ -456,3 +457,14 @@ def test_cast_1d_arraylike_from_scalar_categorical(self):
|
456 | 457 | def test_construct_1d_ndarray_preserving_na(values, dtype, expected):
|
457 | 458 | result = construct_1d_ndarray_preserving_na(values, dtype=dtype)
|
458 | 459 | tm.assert_numpy_array_equal(result, expected)
|
| 460 | + |
| 461 | +@pytest.mark.parametrize('arr, dtype, expected', [ |
| 462 | + (np.array(['0:0:1'], dtype='object'), 'timedelta64[ns]', 'timedelta64[ns]'), |
| 463 | + (np.array(['0:0:1'], dtype='object'), 'timedelta64', 'timedelta64'), |
| 464 | + (np.array(['2000'], dtype='object'), 'datetime64[ns]', 'datetime64[ns]'), |
| 465 | + (np.array(['2000'], dtype='object'), 'datetime64', 'datetime64'), |
| 466 | +]) |
| 467 | +def test_astype_nansafe(arr, dtype, expected): |
| 468 | + # GH #22100 |
| 469 | + result = astype_nansafe(arr, dtype) |
| 470 | + is_dtype_equal(arr.dtype, expected) |
0 commit comments