-
Notifications
You must be signed in to change notification settings - Fork 11.5k
/
Copy pathtest_embedding.py
193 lines (165 loc) · 5.85 KB
/
test_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import pytest
from openai import OpenAI
from utils import *
server = ServerPreset.bert_bge_small()
EPSILON = 1e-3
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.bert_bge_small()
def test_embedding_single():
global server
server.pooling = 'last'
server.start()
res = server.make_request("POST", "/v1/embeddings", data={
"input": "I believe the meaning of life is",
})
assert res.status_code == 200
assert len(res.body['data']) == 1
assert 'embedding' in res.body['data'][0]
assert len(res.body['data'][0]['embedding']) > 1
# make sure embedding vector is normalized
assert abs(sum([x ** 2 for x in res.body['data'][0]['embedding']]) - 1) < EPSILON
def test_embedding_multiple():
global server
server.pooling = 'last'
server.start()
res = server.make_request("POST", "/v1/embeddings", data={
"input": [
"I believe the meaning of life is",
"Write a joke about AI from a very long prompt which will not be truncated",
"This is a test",
"This is another test",
],
})
assert res.status_code == 200
assert len(res.body['data']) == 4
for d in res.body['data']:
assert 'embedding' in d
assert len(d['embedding']) > 1
@pytest.mark.parametrize(
"input,is_multi_prompt",
[
# single prompt
("string", False),
([12, 34, 56], False),
([12, 34, "string", 56, 78], False),
# multiple prompts
(["string1", "string2"], True),
(["string1", [12, 34, 56]], True),
([[12, 34, 56], [12, 34, 56]], True),
([[12, 34, 56], [12, "string", 34, 56]], True),
]
)
def test_embedding_mixed_input(input, is_multi_prompt: bool):
global server
server.start()
res = server.make_request("POST", "/v1/embeddings", data={"input": input})
assert res.status_code == 200
data = res.body['data']
if is_multi_prompt:
assert len(data) == len(input)
for d in data:
assert 'embedding' in d
assert len(d['embedding']) > 1
else:
assert 'embedding' in data[0]
assert len(data[0]['embedding']) > 1
def test_embedding_pooling_none():
global server
server.pooling = 'none'
server.start()
res = server.make_request("POST", "/embeddings", data={
"input": "hello hello hello",
})
assert res.status_code == 200
assert 'embedding' in res.body[0]
assert len(res.body[0]['embedding']) == 5 # 3 text tokens + 2 special
# make sure embedding vector is not normalized
for x in res.body[0]['embedding']:
assert abs(sum([x ** 2 for x in x]) - 1) > EPSILON
def test_embedding_pooling_none_oai():
global server
server.pooling = 'none'
server.start()
res = server.make_request("POST", "/v1/embeddings", data={
"input": "hello hello hello",
})
# /v1/embeddings does not support pooling type 'none'
assert res.status_code == 400
def test_embedding_openai_library_single():
global server
server.pooling = 'last'
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.embeddings.create(model="text-embedding-3-small", input="I believe the meaning of life is")
assert len(res.data) == 1
assert len(res.data[0].embedding) > 1
def test_embedding_openai_library_multiple():
global server
server.pooling = 'last'
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.embeddings.create(model="text-embedding-3-small", input=[
"I believe the meaning of life is",
"Write a joke about AI from a very long prompt which will not be truncated",
"This is a test",
"This is another test",
])
assert len(res.data) == 4
for d in res.data:
assert len(d.embedding) > 1
def test_embedding_error_prompt_too_long():
global server
server.pooling = 'last'
server.start()
res = server.make_request("POST", "/v1/embeddings", data={
"input": "This is a test " * 512,
})
assert res.status_code != 200
assert "too large" in res.body["error"]["message"]
def test_same_prompt_give_same_result():
server.pooling = 'last'
server.start()
res = server.make_request("POST", "/v1/embeddings", data={
"input": [
"I believe the meaning of life is",
"I believe the meaning of life is",
"I believe the meaning of life is",
"I believe the meaning of life is",
"I believe the meaning of life is",
],
})
assert res.status_code == 200
assert len(res.body['data']) == 5
for i in range(1, len(res.body['data'])):
v0 = res.body['data'][0]['embedding']
vi = res.body['data'][i]['embedding']
for x, y in zip(v0, vi):
assert abs(x - y) < EPSILON
@pytest.mark.parametrize(
"content,n_tokens",
[
("I believe the meaning of life is", 9),
("This is a test", 6),
]
)
def test_embedding_usage_single(content, n_tokens):
global server
server.start()
res = server.make_request("POST", "/v1/embeddings", data={"input": content})
assert res.status_code == 200
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
assert res.body['usage']['prompt_tokens'] == n_tokens
def test_embedding_usage_multiple():
global server
server.start()
res = server.make_request("POST", "/v1/embeddings", data={
"input": [
"I believe the meaning of life is",
"I believe the meaning of life is",
],
})
assert res.status_code == 200
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
assert res.body['usage']['prompt_tokens'] == 2 * 9