Skip to content

Commit cb324f4

Browse files
committed
remove .rotary_pos_emb.inv_freq and unuse code for chatglm3 model
Signed-off-by: XingXing Qiao <[email protected]>
1 parent 398fecb commit cb324f4

File tree

1 file changed

+8
-75
lines changed

1 file changed

+8
-75
lines changed

convert-hf-to-gguf.py

+8-75
Original file line numberDiff line numberDiff line change
@@ -2468,85 +2468,18 @@ def set_gguf_parameters(self):
24682468
self.gguf_writer.add_rope_dimension_count(64)
24692469
self.gguf_writer.add_add_bos_token(False)
24702470

2471-
def write_tensors(self):
2472-
block_count = self.hparams["num_layers"]
2473-
tensors = dict(self.get_tensors())
2474-
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
2475-
has_lm_head = True
2476-
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
2477-
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
2478-
2479-
for name, data_torch in tensors.items():
2480-
if name.endswith(".rotary_pos_emb.inv_freq"):
2481-
continue
2482-
2483-
if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
2484-
has_lm_head = False
2471+
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2472+
if name.endswith(".rotary_pos_emb.inv_freq"):
2473+
return []
24852474

2486-
name = re.sub(r'transformer\.', '', name)
2475+
del bid # unused
24872476

2488-
old_dtype = data_torch.dtype
2477+
name = re.sub(r'transformer\.', '', name)
24892478

2490-
# convert any unsupported data types to float32
2491-
if data_torch.dtype not in (torch.float16, torch.float32):
2492-
data_torch = data_torch.to(torch.float32)
2479+
if name == "word_embeddings.weight":
2480+
assert self.tensor_names is not None
24932481

2494-
data = data_torch.squeeze().numpy()
2495-
2496-
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
2497-
# Map bloom-style qkv_linear to gpt-style qkv_linear
2498-
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
2499-
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
2500-
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
2501-
data = np.concatenate(
2502-
(
2503-
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
2504-
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
2505-
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
2506-
),
2507-
axis=0,
2508-
)
2509-
print("re-format attention.linear_qkv.weight")
2510-
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
2511-
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
2512-
data = np.concatenate(
2513-
(
2514-
qkv_bias[:, 0, :].reshape((n_embed,)),
2515-
qkv_bias[:, 1, :].reshape((n_embed,)),
2516-
qkv_bias[:, 2, :].reshape((n_embed,)),
2517-
),
2518-
axis=0,
2519-
)
2520-
print("re-format attention.linear_qkv.bias")
2521-
2522-
# map tensor names
2523-
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
2524-
if new_name is None:
2525-
print(f"Can not map tensor {name!r}")
2526-
sys.exit()
2527-
2528-
n_dims = len(data.shape)
2529-
data_dtype = data.dtype
2530-
2531-
# if f32 desired, convert any float16 to float32
2532-
if self.ftype == 0 and data_dtype == np.float16:
2533-
data = data.astype(np.float32)
2534-
2535-
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
2536-
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
2537-
data = data.astype(np.float32)
2538-
2539-
# if f16 desired, convert any float32 2-dim weight tensors to float16
2540-
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
2541-
data = data.astype(np.float16)
2542-
2543-
print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
2544-
2545-
self.gguf_writer.add_tensor(new_name, data)
2546-
2547-
if not has_lm_head and name == "word_embeddings.weight":
2548-
self.gguf_writer.add_tensor("output.weight", data)
2549-
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
2482+
return [(self.map_tensor_name(name), data_torch)]
25502483

25512484

25522485
###### CONVERSION LOGIC ######

0 commit comments

Comments
 (0)