38
38
39
39
class Model (proto .Message ):
40
40
r"""
41
+
41
42
Attributes:
42
43
etag (str):
43
44
Output only. A hash of this resource.
@@ -251,7 +252,8 @@ class FeedbackType(proto.Enum):
251
252
EXPLICIT = 2
252
253
253
254
class SeasonalPeriod (proto .Message ):
254
- r""" """
255
+ r"""
256
+ """
255
257
256
258
class SeasonalPeriodType (proto .Enum ):
257
259
r""""""
@@ -264,7 +266,8 @@ class SeasonalPeriodType(proto.Enum):
264
266
YEARLY = 6
265
267
266
268
class KmeansEnums (proto .Message ):
267
- r""" """
269
+ r"""
270
+ """
268
271
269
272
class KmeansInitializationMethod (proto .Enum ):
270
273
r"""Indicates the method used to initialize the centroids for
@@ -386,6 +389,7 @@ class BinaryClassificationMetrics(proto.Message):
386
389
387
390
class BinaryConfusionMatrix (proto .Message ):
388
391
r"""Confusion matrix for binary classification models.
392
+
389
393
Attributes:
390
394
positive_class_threshold (google.protobuf.wrappers_pb2.DoubleValue):
391
395
Threshold value used when computing each of
@@ -464,6 +468,7 @@ class MultiClassClassificationMetrics(proto.Message):
464
468
465
469
class ConfusionMatrix (proto .Message ):
466
470
r"""Confusion matrix for multi-class classification models.
471
+
467
472
Attributes:
468
473
confidence_threshold (google.protobuf.wrappers_pb2.DoubleValue):
469
474
Confidence threshold used when computing the
@@ -474,6 +479,7 @@ class ConfusionMatrix(proto.Message):
474
479
475
480
class Entry (proto .Message ):
476
481
r"""A single entry in the confusion matrix.
482
+
477
483
Attributes:
478
484
predicted_label (str):
479
485
The predicted label. For confidence_threshold > 0, we will
@@ -491,6 +497,7 @@ class Entry(proto.Message):
491
497
492
498
class Row (proto .Message ):
493
499
r"""A single row in the confusion matrix.
500
+
494
501
Attributes:
495
502
actual_label (str):
496
503
The original label of this row.
@@ -525,6 +532,7 @@ class Row(proto.Message):
525
532
526
533
class ClusteringMetrics (proto .Message ):
527
534
r"""Evaluation metrics for clustering models.
535
+
528
536
Attributes:
529
537
davies_bouldin_index (google.protobuf.wrappers_pb2.DoubleValue):
530
538
Davies-Bouldin index.
@@ -537,6 +545,7 @@ class ClusteringMetrics(proto.Message):
537
545
538
546
class Cluster (proto .Message ):
539
547
r"""Message containing the information about one cluster.
548
+
540
549
Attributes:
541
550
centroid_id (int):
542
551
Centroid id.
@@ -550,6 +559,7 @@ class Cluster(proto.Message):
550
559
551
560
class FeatureValue (proto .Message ):
552
561
r"""Representative value of a single feature within the cluster.
562
+
553
563
Attributes:
554
564
feature_column (str):
555
565
The feature column name.
@@ -562,6 +572,7 @@ class FeatureValue(proto.Message):
562
572
563
573
class CategoricalValue (proto .Message ):
564
574
r"""Representative value of a categorical feature.
575
+
565
576
Attributes:
566
577
category_counts (Sequence[google.cloud.bigquery_v2.types.Model.ClusteringMetrics.Cluster.FeatureValue.CategoricalValue.CategoryCount]):
567
578
Counts of all categories for the categorical feature. If
@@ -573,6 +584,7 @@ class CategoricalValue(proto.Message):
573
584
574
585
class CategoryCount (proto .Message ):
575
586
r"""Represents the count of a single category within the cluster.
587
+
576
588
Attributes:
577
589
category (str):
578
590
The name of category.
@@ -668,6 +680,7 @@ class RankingMetrics(proto.Message):
668
680
669
681
class ArimaForecastingMetrics (proto .Message ):
670
682
r"""Model evaluation metrics for ARIMA forecasting models.
683
+
671
684
Attributes:
672
685
non_seasonal_order (Sequence[google.cloud.bigquery_v2.types.Model.ArimaOrder]):
673
686
Non-seasonal order.
@@ -857,6 +870,7 @@ class ArimaOrder(proto.Message):
857
870
858
871
class ArimaFittingMetrics (proto .Message ):
859
872
r"""ARIMA model fitting metrics.
873
+
860
874
Attributes:
861
875
log_likelihood (float):
862
876
Log-likelihood.
@@ -888,6 +902,7 @@ class GlobalExplanation(proto.Message):
888
902
889
903
class Explanation (proto .Message ):
890
904
r"""Explanation for a single feature.
905
+
891
906
Attributes:
892
907
feature_name (str):
893
908
Full name of the feature. For non-numerical features, will
@@ -910,6 +925,7 @@ class Explanation(proto.Message):
910
925
911
926
class TrainingRun (proto .Message ):
912
927
r"""Information about a single training query run for the model.
928
+
913
929
Attributes:
914
930
training_options (google.cloud.bigquery_v2.types.Model.TrainingRun.TrainingOptions):
915
931
Options that were used for this training run,
@@ -935,6 +951,7 @@ class TrainingRun(proto.Message):
935
951
936
952
class TrainingOptions (proto .Message ):
937
953
r"""Options used in model training.
954
+
938
955
Attributes:
939
956
max_iterations (int):
940
957
The maximum number of iterations in training.
@@ -1182,6 +1199,7 @@ class TrainingOptions(proto.Message):
1182
1199
1183
1200
class IterationResult (proto .Message ):
1184
1201
r"""Information about a single iteration of the training run.
1202
+
1185
1203
Attributes:
1186
1204
index (google.protobuf.wrappers_pb2.Int32Value):
1187
1205
Index of the iteration, 0 based.
@@ -1205,6 +1223,7 @@ class IterationResult(proto.Message):
1205
1223
1206
1224
class ClusterInfo (proto .Message ):
1207
1225
r"""Information about a single cluster for clustering model.
1226
+
1208
1227
Attributes:
1209
1228
centroid_id (int):
1210
1229
Centroid id.
@@ -1241,6 +1260,7 @@ class ArimaResult(proto.Message):
1241
1260
1242
1261
class ArimaCoefficients (proto .Message ):
1243
1262
r"""Arima coefficients.
1263
+
1244
1264
Attributes:
1245
1265
auto_regressive_coefficients (Sequence[float]):
1246
1266
Auto-regressive coefficients, an array of
@@ -1263,6 +1283,7 @@ class ArimaCoefficients(proto.Message):
1263
1283
1264
1284
class ArimaModelInfo (proto .Message ):
1265
1285
r"""Arima model information.
1286
+
1266
1287
Attributes:
1267
1288
non_seasonal_order (google.cloud.bigquery_v2.types.Model.ArimaOrder):
1268
1289
Non-seasonal order.
@@ -1409,6 +1430,7 @@ class ArimaModelInfo(proto.Message):
1409
1430
1410
1431
class GetModelRequest (proto .Message ):
1411
1432
r"""
1433
+
1412
1434
Attributes:
1413
1435
project_id (str):
1414
1436
Required. Project ID of the requested model.
@@ -1425,6 +1447,7 @@ class GetModelRequest(proto.Message):
1425
1447
1426
1448
class PatchModelRequest (proto .Message ):
1427
1449
r"""
1450
+
1428
1451
Attributes:
1429
1452
project_id (str):
1430
1453
Required. Project ID of the model to patch.
@@ -1447,6 +1470,7 @@ class PatchModelRequest(proto.Message):
1447
1470
1448
1471
class DeleteModelRequest (proto .Message ):
1449
1472
r"""
1473
+
1450
1474
Attributes:
1451
1475
project_id (str):
1452
1476
Required. Project ID of the model to delete.
@@ -1463,6 +1487,7 @@ class DeleteModelRequest(proto.Message):
1463
1487
1464
1488
class ListModelsRequest (proto .Message ):
1465
1489
r"""
1490
+
1466
1491
Attributes:
1467
1492
project_id (str):
1468
1493
Required. Project ID of the models to list.
@@ -1487,6 +1512,7 @@ class ListModelsRequest(proto.Message):
1487
1512
1488
1513
class ListModelsResponse (proto .Message ):
1489
1514
r"""
1515
+
1490
1516
Attributes:
1491
1517
models (Sequence[google.cloud.bigquery_v2.types.Model]):
1492
1518
Models in the requested dataset. Only the following fields
0 commit comments