Skip to content

Commit e2da93d

Browse files
author
joem
committed
Updated for PyData Seattle tutorial
1 parent a3aa0a2 commit e2da93d

9 files changed

+12126
-12750
lines changed

1_Introduction.ipynb

+132-129
Large diffs are not rendered by default.

2_Data_Science_Basic_Concepts.ipynb

+325-326
Large diffs are not rendered by default.

3_Python_Basic_Concepts.ipynb

+2,458-2,673
Large diffs are not rendered by default.

4_Python_Simple_Decision_Tree.ipynb

+1,463-1,856
Large diffs are not rendered by default.

5_Next_Steps.ipynb

+99-91
Original file line numberDiff line numberDiff line change
@@ -1,94 +1,102 @@
11
{
2-
"metadata": {
3-
"name": "",
4-
"signature": "sha256:84e68912df2865badec94cd3908a4bf864847c8755dba09fd202622c4cbb21b1"
5-
},
6-
"nbformat": 3,
7-
"nbformat_minor": 0,
8-
"worksheets": [
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Python for Data Science"
8+
]
9+
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"[Joe McCarthy](http://interrelativity.com/joe), \n",
15+
"*Director, Analytics & Data Science*, [Atigeo, LLC](http://atigeo.com)"
16+
]
17+
},
18+
{
19+
"cell_type": "code",
20+
"execution_count": 1,
21+
"metadata": {
22+
"collapsed": false
23+
},
24+
"outputs": [],
25+
"source": [
26+
"from IPython.display import display, Image, HTML"
27+
]
28+
},
29+
{
30+
"cell_type": "markdown",
31+
"metadata": {},
32+
"source": [
33+
"## 5. Next steps"
34+
]
35+
},
936
{
10-
"cells": [
11-
{
12-
"cell_type": "heading",
13-
"level": 1,
14-
"metadata": {},
15-
"source": [
16-
"Python for Data Science"
17-
]
18-
},
19-
{
20-
"cell_type": "markdown",
21-
"metadata": {},
22-
"source": [
23-
"[Joe McCarthy](http://interrelativity.com/joe), \n",
24-
"*Director, Analytics & Data Science*, [Atigeo, LLC](http://atigeo.com)"
25-
]
26-
},
27-
{
28-
"cell_type": "code",
29-
"collapsed": false,
30-
"input": [
31-
"from IPython.display import display, Image, HTML"
32-
],
33-
"language": "python",
34-
"metadata": {},
35-
"outputs": [],
36-
"prompt_number": 1
37-
},
38-
{
39-
"cell_type": "heading",
40-
"level": 2,
41-
"metadata": {},
42-
"source": [
43-
"5. Next steps"
44-
]
45-
},
46-
{
47-
"cell_type": "markdown",
48-
"metadata": {},
49-
"source": [
50-
"There are a variety of Python libraries - e.g., [Scikit-Learn](http://scikit-learn.org/) and [xPatterns](http://atigeo.com/technology/) - for building more full-featured decision trees and other types of models based on a variety of machine learning algorithms. Hopefully, this primer will have prepared you for learning how to use those libraries effectively.\n",
51-
"\n",
52-
"Many Python-based machine learning libraries use other external Python libraries such as [NumPy](http://www.numpy.org/), [SciPy](http://www.scipy.org/scipylib/), [Matplotlib](http://matplotlib.org/) and [pandas](http://pandas.pydata.org/). There are tutorials available for each of these libraries, including the following:\n",
53-
"\n",
54-
"* [Tentative NumPy Tutorial](http://wiki.scipy.org/Tentative_NumPy_Tutorial)\n",
55-
"* [SciPy Tutorial](http://docs.scipy.org/doc/scipy/reference/tutorial/)\n",
56-
"* [Matplotlib PyPlot Tutorial](http://matplotlib.org/1.3.1/users/pyplot_tutorial.html)\n",
57-
"* [Pandas Tutorials](http://pandas.pydata.org/pandas-docs/stable/tutorials.html) (especially [10 Minutes to Pandas](http://pandas.pydata.org/pandas-docs/stable/10min.html))\n",
58-
"\n",
59-
"There are many machine learning or data science resources that may be useful to help you continue the journey. Here is a sampling:\n",
60-
"\n",
61-
"* [An introduction to machine learning with scikit-learn](http://scikit-learn.org/stable/tutorial/basic/tutorial.html)\n",
62-
"* Olivier Grisel's Strata 2014 tutorial, [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial)\n",
63-
"* Kaggle's [Getting Started With Python For Data Science](http://www.kaggle.com/wiki/GettingStartedWithPythonForDataScience)\n",
64-
"* Coursera's [Introduction to Data Science](https://www.coursera.org/course/datasci)\n",
65-
"\n",
66-
"Please feel free to contact the author ([Joe McCarthy](mailto:[email protected]?subject=Python for Data Science)) to suggest additional resources."
67-
]
68-
},
69-
{
70-
"cell_type": "heading",
71-
"level": 3,
72-
"metadata": {},
73-
"source": [
74-
"Navigation"
75-
]
76-
},
77-
{
78-
"cell_type": "markdown",
79-
"metadata": {},
80-
"source": [
81-
"Notebooks in this primer:\n",
82-
"\n",
83-
"* [1. Introduction](1_Introduction.ipynb)\n",
84-
"* [2. Data Science: Basic Concepts](2_Data_Science_Basic_Concepts.ipynb)\n",
85-
"* [3. Python: Basic Concepts](3_Python_Basic_Concepts.ipynb)\n",
86-
"* [4. Using Python to Build and Use a Simple Decision Tree Classifier](4_Python_Simple_Decision_Tree.ipynb)\n",
87-
"* **5. Next Steps** (*you are here*)"
88-
]
89-
}
90-
],
91-
"metadata": {}
37+
"cell_type": "markdown",
38+
"metadata": {},
39+
"source": [
40+
"There are a variety of Python libraries - e.g., [Scikit-Learn](http://scikit-learn.org/) - for building more full-featured decision trees and other types of models based on a variety of machine learning algorithms. Hopefully, this primer will have prepared you for learning how to use those libraries effectively.\n",
41+
"\n",
42+
"Many Python-based machine learning libraries use other external Python libraries such as [NumPy](http://www.numpy.org/), [SciPy](http://www.scipy.org/scipylib/), [Matplotlib](http://matplotlib.org/) and [pandas](http://pandas.pydata.org/). There are tutorials available for each of these libraries, including the following:\n",
43+
"\n",
44+
"* [Tentative NumPy Tutorial](http://wiki.scipy.org/Tentative_NumPy_Tutorial)\n",
45+
"* [SciPy Tutorial](http://docs.scipy.org/doc/scipy/reference/tutorial/)\n",
46+
"* [Matplotlib PyPlot Tutorial](http://matplotlib.org/1.3.1/users/pyplot_tutorial.html)\n",
47+
"* [Pandas Tutorials](http://pandas.pydata.org/pandas-docs/stable/tutorials.html) (especially [10 Minutes to Pandas](http://pandas.pydata.org/pandas-docs/stable/10min.html))\n",
48+
"\n",
49+
"There are many machine learning or data science resources that may be useful to help you continue the journey. Here is a sampling:\n",
50+
"\n",
51+
"* Scikit-learn's tutorial, [An introduction to machine learning with scikit-learn](http://scikit-learn.org/stable/tutorial/basic/tutorial.html)\n",
52+
"* Kevin Markham's video series (on the Kaggle blog), [An introduction to machine learning with scikit-learn](http://blog.kaggle.com/2015/04/08/new-video-series-introduction-to-machine-learning-with-scikit-learn/)\n",
53+
"* Kaggle's [Getting Started With Python For Data Science](http://www.kaggle.com/wiki/GettingStartedWithPythonForDataScience)\n",
54+
"* Coursera's [Introduction to Data Science](https://www.coursera.org/course/datasci)\n",
55+
"* Olivier Grisel's Strata 2014 tutorial, [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial)\n",
56+
"\n",
57+
"Please feel free to contact the author ([Joe McCarthy](mailto:[email protected]?subject=Python for Data Science)) to suggest additional resources."
58+
]
59+
},
60+
{
61+
"cell_type": "markdown",
62+
"metadata": {},
63+
"source": [
64+
"### Navigation"
65+
]
66+
},
67+
{
68+
"cell_type": "markdown",
69+
"metadata": {},
70+
"source": [
71+
"Notebooks in this primer:\n",
72+
"\n",
73+
"* [1. Introduction](1_Introduction.ipynb)\n",
74+
"* [2. Data Science: Basic Concepts](2_Data_Science_Basic_Concepts.ipynb)\n",
75+
"* [3. Python: Basic Concepts](3_Python_Basic_Concepts.ipynb)\n",
76+
"* [4. Using Python to Build and Use a Simple Decision Tree Classifier](4_Python_Simple_Decision_Tree.ipynb)\n",
77+
"* **5. Next Steps** (*you are here*)"
78+
]
9279
}
93-
]
94-
}
80+
],
81+
"metadata": {
82+
"kernelspec": {
83+
"display_name": "Python 2",
84+
"language": "python",
85+
"name": "python2"
86+
},
87+
"language_info": {
88+
"codemirror_mode": {
89+
"name": "ipython",
90+
"version": 2
91+
},
92+
"file_extension": ".py",
93+
"mimetype": "text/x-python",
94+
"name": "python",
95+
"nbconvert_exporter": "python",
96+
"pygments_lexer": "ipython2",
97+
"version": "2.7.10"
98+
}
99+
},
100+
"nbformat": 4,
101+
"nbformat_minor": 0
102+
}

0 commit comments

Comments
 (0)