forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pivot.py
429 lines (342 loc) · 17.4 KB
/
test_pivot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import unittest
import numpy as np
from numpy.testing import assert_equal
from pandas import DataFrame, Series, Index, MultiIndex
from pandas.tools.merge import concat
from pandas.tools.pivot import pivot_table, crosstab
import pandas.util.testing as tm
class TestPivotTable(unittest.TestCase):
_multiprocess_can_split_ = True
def setUp(self):
self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo',
'bar', 'bar', 'bar', 'bar',
'foo', 'foo', 'foo'],
'B': ['one', 'one', 'one', 'two',
'one', 'one', 'one', 'two',
'two', 'two', 'one'],
'C': ['dull', 'dull', 'shiny', 'dull',
'dull', 'shiny', 'shiny', 'dull',
'shiny', 'shiny', 'shiny'],
'D': np.random.randn(11),
'E': np.random.randn(11),
'F': np.random.randn(11)})
def test_pivot_table(self):
rows = ['A', 'B']
cols = 'C'
table = pivot_table(self.data, values='D', rows=rows, cols=cols)
table2 = self.data.pivot_table(values='D', rows=rows, cols=cols)
tm.assert_frame_equal(table, table2)
# this works
pivot_table(self.data, values='D', rows=rows)
if len(rows) > 1:
self.assertEqual(table.index.names, rows)
else:
self.assertEqual(table.index.name, rows[0])
if len(cols) > 1:
self.assertEqual(table.columns.names, cols)
else:
self.assertEqual(table.columns.name, cols[0])
expected = self.data.groupby(rows + [cols])['D'].agg(np.mean).unstack()
tm.assert_frame_equal(table, expected)
def test_pivot_table_nocols(self):
df = DataFrame({'rows': ['a', 'b', 'c'],
'cols': ['x', 'y', 'z'],
'values': [1,2,3]})
rs = df.pivot_table(cols='cols', aggfunc=np.sum)
xp = df.pivot_table(rows='cols', aggfunc=np.sum).T
tm.assert_frame_equal(rs, xp)
rs = df.pivot_table(cols='cols', aggfunc={'values': 'mean'})
xp = df.pivot_table(rows='cols', aggfunc={'values': 'mean'}).T
tm.assert_frame_equal(rs, xp)
def test_pivot_table_dropna(self):
df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000},
'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'},
'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310},
'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'},
'quantity': {0: 2000000, 1: 500000, 2: 1000000, 3: 1000000}})
pv_col = df.pivot_table('quantity', 'month', ['customer', 'product'], dropna=False)
pv_ind = df.pivot_table('quantity', ['customer', 'product'], 'month', dropna=False)
m = MultiIndex.from_tuples([(u'A', u'a'), (u'A', u'b'), (u'A', u'c'), (u'A', u'd'),
(u'B', u'a'), (u'B', u'b'), (u'B', u'c'), (u'B', u'd'),
(u'C', u'a'), (u'C', u'b'), (u'C', u'c'), (u'C', u'd')])
assert_equal(pv_col.columns.values, m.values)
assert_equal(pv_ind.index.values, m.values)
def test_pass_array(self):
result = self.data.pivot_table('D', rows=self.data.A, cols=self.data.C)
expected = self.data.pivot_table('D', rows='A', cols='C')
tm.assert_frame_equal(result, expected)
def test_pass_function(self):
result = self.data.pivot_table('D', rows=lambda x: x // 5,
cols=self.data.C)
expected = self.data.pivot_table('D', rows=self.data.index // 5,
cols='C')
tm.assert_frame_equal(result, expected)
def test_pivot_table_multiple(self):
rows = ['A', 'B']
cols = 'C'
table = pivot_table(self.data, rows=rows, cols=cols)
expected = self.data.groupby(rows + [cols]).agg(np.mean).unstack()
tm.assert_frame_equal(table, expected)
def test_pivot_dtypes(self):
# can convert dtypes
f = DataFrame({'a' : ['cat', 'bat', 'cat', 'bat'], 'v' : [1,2,3,4], 'i' : ['a','b','a','b']})
self.assert_(f.dtypes['v'] == 'int64')
z = pivot_table(f, values='v', rows=['a'], cols=['i'], fill_value=0, aggfunc=np.sum)
result = z.get_dtype_counts()
expected = Series(dict(int64 = 2))
tm.assert_series_equal(result, expected)
# cannot convert dtypes
f = DataFrame({'a' : ['cat', 'bat', 'cat', 'bat'], 'v' : [1.5,2.5,3.5,4.5], 'i' : ['a','b','a','b']})
self.assert_(f.dtypes['v'] == 'float64')
z = pivot_table(f, values='v', rows=['a'], cols=['i'], fill_value=0, aggfunc=np.mean)
result = z.get_dtype_counts()
expected = Series(dict(float64 = 2))
tm.assert_series_equal(result, expected)
def test_pivot_multi_values(self):
result = pivot_table(self.data, values=['D', 'E'],
rows='A', cols=['B', 'C'], fill_value=0)
expected = pivot_table(self.data.drop(['F'], axis=1),
rows='A', cols=['B', 'C'], fill_value=0)
tm.assert_frame_equal(result, expected)
def test_pivot_multi_functions(self):
f = lambda func: pivot_table(self.data, values=['D', 'E'],
rows=['A', 'B'], cols='C',
aggfunc=func)
result = f([np.mean, np.std])
means = f(np.mean)
stds = f(np.std)
expected = concat([means, stds], keys=['mean', 'std'], axis=1)
tm.assert_frame_equal(result, expected)
# margins not supported??
f = lambda func: pivot_table(self.data, values=['D', 'E'],
rows=['A', 'B'], cols='C',
aggfunc=func, margins=True)
result = f([np.mean, np.std])
means = f(np.mean)
stds = f(np.std)
expected = concat([means, stds], keys=['mean', 'std'], axis=1)
tm.assert_frame_equal(result, expected)
def test_pivot_index_with_nan(self):
# GH 3588
nan = np.nan
df = DataFrame({"a":['R1', 'R2', nan, 'R4'], 'b':["C1", "C2", "C3" , "C4"], "c":[10, 15, nan , 20]})
result = df.pivot('a','b','c')
expected = DataFrame([[nan,nan,nan,nan],[nan,10,nan,nan],
[nan,nan,nan,nan],[nan,nan,15,20]],
index = Index(['R1','R2',nan,'R4'],name='a'),
columns = Index(['C1','C2','C3','C4'],name='b'))
tm.assert_frame_equal(result, expected)
def test_margins(self):
def _check_output(res, col, rows=['A', 'B'], cols=['C']):
cmarg = res['All'][:-1]
exp = self.data.groupby(rows)[col].mean()
tm.assert_series_equal(cmarg, exp)
rmarg = res.xs(('All', ''))[:-1]
exp = self.data.groupby(cols)[col].mean()
tm.assert_series_equal(rmarg, exp)
gmarg = res['All']['All', '']
exp = self.data[col].mean()
self.assertEqual(gmarg, exp)
# column specified
table = self.data.pivot_table('D', rows=['A', 'B'], cols='C',
margins=True, aggfunc=np.mean)
_check_output(table, 'D')
# no column specified
table = self.data.pivot_table(rows=['A', 'B'], cols='C',
margins=True, aggfunc=np.mean)
for valcol in table.columns.levels[0]:
_check_output(table[valcol], valcol)
# no col
# to help with a buglet
self.data.columns = [k * 2 for k in self.data.columns]
table = self.data.pivot_table(rows=['AA', 'BB'], margins=True,
aggfunc=np.mean)
for valcol in table.columns:
gmarg = table[valcol]['All', '']
self.assertEqual(gmarg, self.data[valcol].mean())
# this is OK
table = self.data.pivot_table(rows=['AA', 'BB'], margins=True,
aggfunc='mean')
# no rows
rtable = self.data.pivot_table(cols=['AA', 'BB'], margins=True,
aggfunc=np.mean)
self.assert_(isinstance(rtable, Series))
for item in ['DD', 'EE', 'FF']:
gmarg = table[item]['All', '']
self.assertEqual(gmarg, self.data[item].mean())
def test_pivot_integer_columns(self):
# caused by upstream bug in unstack
from pandas.util.compat import product
import datetime
import pandas
d = datetime.date.min
data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'],
[d + datetime.timedelta(i) for i in xrange(20)], [1.0]))
df = pandas.DataFrame(data)
table = df.pivot_table(values=4, rows=[0, 1, 3], cols=[2])
df2 = df.rename(columns=str)
table2 = df2.pivot_table(values='4', rows=['0', '1', '3'], cols=['2'])
tm.assert_frame_equal(table, table2, check_names=False)
def test_pivot_no_level_overlap(self):
# GH #1181
data = DataFrame({'a': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'] * 2,
'b': [0, 0, 0, 0, 1, 1, 1, 1] * 2,
'c': (['foo'] * 4 + ['bar'] * 4) * 2,
'value': np.random.randn(16)})
table = data.pivot_table('value', rows='a', cols=['b', 'c'])
grouped = data.groupby(['a', 'b', 'c'])['value'].mean()
expected = grouped.unstack('b').unstack('c').dropna(axis=1, how='all')
tm.assert_frame_equal(table, expected)
def test_pivot_columns_lexsorted(self):
import datetime
import numpy as np
import pandas
n = 10000
dtype = np.dtype([
("Index", object),
("Symbol", object),
("Year", int),
("Month", int),
("Day", int),
("Quantity", int),
("Price", float),
])
products = np.array([
('SP500', 'ADBE'),
('SP500', 'NVDA'),
('SP500', 'ORCL'),
('NDQ100', 'AAPL'),
('NDQ100', 'MSFT'),
('NDQ100', 'GOOG'),
('FTSE', 'DGE.L'),
('FTSE', 'TSCO.L'),
('FTSE', 'GSK.L'),
], dtype=[('Index', object), ('Symbol', object)])
items = np.empty(n, dtype=dtype)
iproduct = np.random.randint(0, len(products), n)
items['Index'] = products['Index'][iproduct]
items['Symbol'] = products['Symbol'][iproduct]
dr = pandas.date_range(datetime.date(2000, 1, 1),
datetime.date(2010, 12, 31))
dates = dr[np.random.randint(0, len(dr), n)]
items['Year'] = dates.year
items['Month'] = dates.month
items['Day'] = dates.day
items['Price'] = np.random.lognormal(4.0, 2.0, n)
df = DataFrame(items)
pivoted = df.pivot_table('Price', rows=['Month', 'Day'],
cols=['Index', 'Symbol', 'Year'],
aggfunc='mean')
self.assert_(pivoted.columns.is_monotonic)
def test_pivot_complex_aggfunc(self):
f = {'D': ['std'], 'E': ['sum']}
expected = self.data.groupby(['A', 'B']).agg(f).unstack('B')
result = self.data.pivot_table(rows='A', cols='B', aggfunc=f)
tm.assert_frame_equal(result, expected)
def test_margins_no_values_no_cols(self):
# Regression test on pivot table: no values or cols passed.
result = self.data[['A', 'B']].pivot_table(rows=['A', 'B'], aggfunc=len, margins=True)
result_list = result.tolist()
self.assertEqual(sum(result_list[:-1]), result_list[-1])
def test_margins_no_values_two_rows(self):
# Regression test on pivot table: no values passed but rows are a multi-index
result = self.data[['A', 'B', 'C']].pivot_table(rows=['A', 'B'], cols='C', aggfunc=len, margins=True)
self.assertEqual(result.All.tolist(), [3.0, 1.0, 4.0, 3.0, 11.0])
def test_margins_no_values_one_row_one_col(self):
# Regression test on pivot table: no values passed but row and col defined
result = self.data[['A', 'B']].pivot_table(rows='A', cols='B', aggfunc=len, margins=True)
self.assertEqual(result.All.tolist(), [4.0, 7.0, 11.0])
def test_margins_no_values_two_row_two_cols(self):
# Regression test on pivot table: no values passed but rows and cols are multi-indexed
self.data['D'] = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k']
result = self.data[['A', 'B', 'C', 'D']].pivot_table(rows=['A', 'B'], cols=['C', 'D'], aggfunc=len, margins=True)
self.assertEqual(result.All.tolist(), [3.0, 1.0, 4.0, 3.0, 11.0])
class TestCrosstab(unittest.TestCase):
def setUp(self):
df = DataFrame({'A': ['foo', 'foo', 'foo', 'foo',
'bar', 'bar', 'bar', 'bar',
'foo', 'foo', 'foo'],
'B': ['one', 'one', 'one', 'two',
'one', 'one', 'one', 'two',
'two', 'two', 'one'],
'C': ['dull', 'dull', 'shiny', 'dull',
'dull', 'shiny', 'shiny', 'dull',
'shiny', 'shiny', 'shiny'],
'D': np.random.randn(11),
'E': np.random.randn(11),
'F': np.random.randn(11)})
self.df = df.append(df, ignore_index=True)
def test_crosstab_single(self):
df = self.df
result = crosstab(df['A'], df['C'])
expected = df.groupby(['A', 'C']).size().unstack()
tm.assert_frame_equal(result, expected.fillna(0).astype(np.int64))
def test_crosstab_multiple(self):
df = self.df
result = crosstab(df['A'], [df['B'], df['C']])
expected = df.groupby(['A', 'B', 'C']).size()
expected = expected.unstack(
'B').unstack('C').fillna(0).astype(np.int64)
tm.assert_frame_equal(result, expected)
result = crosstab([df['B'], df['C']], df['A'])
expected = df.groupby(['B', 'C', 'A']).size()
expected = expected.unstack('A').fillna(0).astype(np.int64)
tm.assert_frame_equal(result, expected)
def test_crosstab_ndarray(self):
a = np.random.randint(0, 5, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 10, size=100)
df = DataFrame({'a': a, 'b': b, 'c': c})
result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'))
expected = crosstab(df['a'], [df['b'], df['c']])
tm.assert_frame_equal(result, expected)
result = crosstab([b, c], a, colnames=['a'], rownames=('b', 'c'))
expected = crosstab([df['b'], df['c']], df['a'])
tm.assert_frame_equal(result, expected)
# assign arbitrary names
result = crosstab(self.df['A'].values, self.df['C'].values)
self.assertEqual(result.index.name, 'row_0')
self.assertEqual(result.columns.name, 'col_0')
def test_crosstab_margins(self):
a = np.random.randint(0, 7, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 5, size=100)
df = DataFrame({'a': a, 'b': b, 'c': c})
result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'),
margins=True)
self.assertEqual(result.index.names, ['a'])
self.assertEqual(result.columns.names, ['b', 'c'])
all_cols = result['All', '']
exp_cols = df.groupby(['a']).size().astype('i8')
exp_cols = exp_cols.append(Series([len(df)], index=['All']))
tm.assert_series_equal(all_cols, exp_cols)
all_rows = result.ix['All']
exp_rows = df.groupby(['b', 'c']).size().astype('i8')
exp_rows = exp_rows.append(Series([len(df)], index=[('All', '')]))
exp_rows = exp_rows.reindex(all_rows.index)
exp_rows = exp_rows.fillna(0).astype(np.int64)
tm.assert_series_equal(all_rows, exp_rows)
def test_crosstab_pass_values(self):
a = np.random.randint(0, 7, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 5, size=100)
values = np.random.randn(100)
table = crosstab([a, b], c, values, aggfunc=np.sum,
rownames=['foo', 'bar'], colnames=['baz'])
df = DataFrame({'foo': a, 'bar': b, 'baz': c, 'values': values})
expected = df.pivot_table('values', rows=['foo', 'bar'], cols='baz',
aggfunc=np.sum)
tm.assert_frame_equal(table, expected)
def test_crosstab_dropna(self):
# GH 3820
a = np.array(['foo', 'foo', 'foo', 'bar', 'bar', 'foo', 'foo'], dtype=object)
b = np.array(['one', 'one', 'two', 'one', 'two', 'two', 'two'], dtype=object)
c = np.array(['dull', 'dull', 'dull', 'dull', 'dull', 'shiny', 'shiny'], dtype=object)
res = crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'], dropna=False)
m = MultiIndex.from_tuples([('one', 'dull'), ('one', 'shiny'),
('two', 'dull'), ('two', 'shiny')])
assert_equal(res.columns.values, m.values)
if __name__ == '__main__':
import nose
nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'],
exit=False)