You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: notebook/agenteval_cq_math.ipynb
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -24,9 +24,9 @@
24
24
"\n",
25
25
"- `QuantifierAgent`: This agent quantifies the performance of any sample task based on the criteria designed by the `CriticAgent` in the following way: $(c_1=a_1, \\dots, c_n=a_n)$\n",
"For more detailed explanations, please refer to the accompanying [blog post](https://https://microsoft.github.io/autogen/blog/2023/11/11/AgentEval)\n",
29
+
"For more detailed explanations, please refer to the accompanying [blog post](https://microsoft.github.io/autogen/blog/2023/11/20/AgentEval)\n",
Copy file name to clipboardExpand all lines: website/docs/Examples.md
+23-13Lines changed: 23 additions & 13 deletions
Original file line number
Diff line number
Diff line change
@@ -1,6 +1,6 @@
1
1
# Examples
2
2
3
-
###Automated Multi Agent Chat
3
+
## Automated Multi Agent Chat
4
4
5
5
AutoGen offers conversable agents powered by LLM, tool or human, which can be used to perform tasks collectively via automated chat. This framework allows tool use and human participation via multi-agent conversation.
6
6
Please find documentation about this feature [here](/docs/Use-Cases/agent_chat).
- Auto Code Generation, Execution, Debugging and Human Feedback - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_human_feedback.ipynb)
15
14
- Automated Code Generation and Question Answering with Retrieval Augmented Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_RetrieveChat.ipynb)
16
15
- Automated Code Generation and Question Answering with [Qdrant](https://qdrant.tech/) based Retrieval Augmented Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_qdrant_RetrieveChat.ipynb)
17
16
18
-
2.**Multi-Agent Collaboration (>3 Agents)**
17
+
1.**Multi-Agent Collaboration (>3 Agents)**
19
18
20
-
- Automated Task Solving with GPT-4 + Multiple Human Users - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb)
21
19
- Automated Task Solving by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_groupchat.ipynb)
22
20
- Automated Data Visualization by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_groupchat_vis.ipynb)
23
21
- Automated Complex Task Solving by Group Chat (with 6 group member agents and 1 manager agent) - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_groupchat_research.ipynb)
- Automated Task Solving with agents divided into 2 groups - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_hierarchy_flow_using_select_speaker.ipynb)
26
24
- Automated Task Solving with transition paths specified in a graph - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_graph_modelling_language_using_select_speaker.ipynb)
27
25
28
-
3.**Applications**
26
+
1.**Applications**
29
27
30
28
- Automated Chess Game Playing & Chitchatting by GPT-4 Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_chess.ipynb)
31
29
- Automated Continual Learning from New Data - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_stream.ipynb)
-**Web Search**: Solve Tasks Requiring Web Info - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_web_info.ipynb)
37
35
- Use Provided Tools as Functions - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_function_call.ipynb)
@@ -40,29 +38,41 @@ Links to notebook examples:
40
38
- In-depth Guide to OpenAI Utility Functions - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/oai_openai_utils.ipynb)
41
39
- Function Inception: Enable AutoGen agents to update/remove functions during conversations. - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_inception_function.ipynb)
42
40
43
-
5.**Agent Teaching and Learning**
41
+
1.**Human Involvement**
42
+
- Auto Code Generation, Execution, Debugging and **Human Feedback** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_human_feedback.ipynb)
43
+
- Automated Task Solving with GPT-4 + **Multiple Human Users** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb)
44
+
- Agent Chat with **Async Human Inputs** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/Async_human_input.ipynb)
45
+
1.**Agent Teaching and Learning**
44
46
- Teach Agents New Skills & Reuse via Automated Chat - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_teaching.ipynb)
45
47
- Teach Agents New Facts, User Preferences and Skills Beyond Coding - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_teachability.ipynb)
46
48
47
-
6.**Multi-Agent Chat with OpenAI Assistants in the loop**
49
+
1.**Multi-Agent Chat with OpenAI Assistants in the loop**
48
50
- Hello-World Chat with OpenAi Assistant in AutoGen - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_twoagents_basic.ipynb)
49
51
- Chat with OpenAI Assistant using Function Call - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_function_call.ipynb)
50
52
- Chat with OpenAI Assistant with Code Interpreter - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_code_interpreter.ipynb)
51
53
- Chat with OpenAI Assistant with Retrieval Augmentation - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_retrieval.ipynb)
52
54
- OpenAI Assistant in a Group Chat - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_groupchat.ipynb)
53
55
54
-
7.**Multimodal Agent**
56
+
1.**Multimodal Agent**
55
57
- Multimodal Agent Chat with DALLE and GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_dalle_and_gpt4v.ipynb)
56
58
- Multimodal Agent Chat with Llava - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)
57
59
- Multimodal Agent Chat with GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_gpt-4v.ipynb)
60
+
1.**Long Context Handling**
61
+
- Conversations with Chat History Compression Enabled - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_compression.ipynb)
62
+
1.**Evaluation and Assessment**
63
+
- AgentEval: A Multi-Agent System for Assess Utility of LLM-powered Applications - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agenteval_cq_math.ipynb)
58
64
65
+
## Enhanced Inferences
66
+
### Utilities
67
+
- API Unification - [View Documentation with Code Example](https://microsoft.github.io/autogen/docs/Use-Cases/enhanced_inference/#api-unification)
68
+
- Utility Functions to Help Managing API configurations effectively - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/oai_openai_utils.ipynb)
AutoGen also offers a cost-effective hyperparameter optimization technique [EcoOptiGen](https://arxiv.org/abs/2303.04673) for tuning Large Language Models. The research study finds that tuning hyperparameters can significantly improve the utility of them.
73
+
AutoGen offers a cost-effective hyperparameter optimization technique [EcoOptiGen](https://arxiv.org/abs/2303.04673) for tuning Large Language Models. The research study finds that tuning hyperparameters can significantly improve the utility of them.
63
74
Please find documentation about this feature [here](/docs/Use-Cases/enhanced_inference).
64
75
65
76
Links to notebook examples:
66
77
*[Optimize for Code Generation](https://github.com/microsoft/autogen/blob/main/notebook/oai_completion.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/oai_completion.ipynb)
67
78
*[Optimize for Math](https://github.com/microsoft/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb)
68
-
*[Usage Estimation](https://github.com/microsoft/autogen/blob/main/notebook/oai_client_cost.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/oai_client_cost.ipynb)
0 commit comments