Skip to content

Commit 02593ff

Browse files
authored
Add examples (microsoft#851)
* add human involvement * citation * AgentEval and invalid links * numbering * add cost to documentation * add cost notebook * oai config list utilities * add utility link * title
1 parent 7a4ba1a commit 02593ff

File tree

3 files changed

+26
-16
lines changed

3 files changed

+26
-16
lines changed

CITATION.cff

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ preferred-citation:
3030
affiliation: "Microsoft Corporation, Redmond WA USA"
3131
- family-names: "Liu"
3232
given-names: "Jiale"
33-
affiliation: "Xidian University, Xi'an China"
33+
affiliation: "Xidian University, Xi'an, China"
3434
- family-names: "Awadallah"
3535
given-names: "Ahmed Hassan"
3636
affiliation: "Microsoft Research, Redmond WA USA"

notebook/agenteval_cq_math.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -24,9 +24,9 @@
2424
"\n",
2525
"- `QuantifierAgent`: This agent quantifies the performance of any sample task based on the criteria designed by the `CriticAgent` in the following way: $(c_1=a_1, \\dots, c_n=a_n)$\n",
2626
"\n",
27-
"![AgentEval](../website/blog/2023-11-11-AgentEval/img/agenteval-CQ.png)\n",
27+
"![AgentEval](../website/blog/2023-11-20-AgentEval/img/agenteval-CQ.png)\n",
2828
"\n",
29-
"For more detailed explanations, please refer to the accompanying [blog post](https://https://microsoft.github.io/autogen/blog/2023/11/11/AgentEval)\n",
29+
"For more detailed explanations, please refer to the accompanying [blog post](https://microsoft.github.io/autogen/blog/2023/11/20/AgentEval)\n",
3030
"\n",
3131
"## Requirements\n",
3232
"\n",

website/docs/Examples.md

Lines changed: 23 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Examples
22

3-
### Automated Multi Agent Chat
3+
## Automated Multi Agent Chat
44

55
AutoGen offers conversable agents powered by LLM, tool or human, which can be used to perform tasks collectively via automated chat. This framework allows tool use and human participation via multi-agent conversation.
66
Please find documentation about this feature [here](/docs/Use-Cases/agent_chat).
@@ -11,27 +11,25 @@ Links to notebook examples:
1111
1. **Code Generation, Execution, and Debugging**
1212

1313
- Automated Task Solving with Code Generation, Execution & Debugging - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_auto_feedback_from_code_execution.ipynb)
14-
- Auto Code Generation, Execution, Debugging and Human Feedback - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_human_feedback.ipynb)
1514
- Automated Code Generation and Question Answering with Retrieval Augmented Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_RetrieveChat.ipynb)
1615
- Automated Code Generation and Question Answering with [Qdrant](https://qdrant.tech/) based Retrieval Augmented Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_qdrant_RetrieveChat.ipynb)
1716

18-
2. **Multi-Agent Collaboration (>3 Agents)**
17+
1. **Multi-Agent Collaboration (>3 Agents)**
1918

20-
- Automated Task Solving with GPT-4 + Multiple Human Users - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb)
2119
- Automated Task Solving by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_groupchat.ipynb)
2220
- Automated Data Visualization by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_groupchat_vis.ipynb)
2321
- Automated Complex Task Solving by Group Chat (with 6 group member agents and 1 manager agent) - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_groupchat_research.ipynb)
2422
- Automated Task Solving with Coding & Planning Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_planning.ipynb)
2523
- Automated Task Solving with agents divided into 2 groups - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_hierarchy_flow_using_select_speaker.ipynb)
2624
- Automated Task Solving with transition paths specified in a graph - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_graph_modelling_language_using_select_speaker.ipynb)
2725

28-
3. **Applications**
26+
1. **Applications**
2927

3028
- Automated Chess Game Playing & Chitchatting by GPT-4 Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_chess.ipynb)
3129
- Automated Continual Learning from New Data - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_stream.ipynb)
32-
- [OptiGuide](https://github.com/microsoft/optiguide) - Coding, Tool Using, Safeguarding & Question Anwering for Supply Chain Optimization
30+
- [OptiGuide](https://github.com/microsoft/optiguide) - Coding, Tool Using, Safeguarding & Question Answering for Supply Chain Optimization
3331

34-
4. **Tool Use**
32+
1. **Tool Use**
3533

3634
- **Web Search**: Solve Tasks Requiring Web Info - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_web_info.ipynb)
3735
- Use Provided Tools as Functions - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_function_call.ipynb)
@@ -40,29 +38,41 @@ Links to notebook examples:
4038
- In-depth Guide to OpenAI Utility Functions - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/oai_openai_utils.ipynb)
4139
- Function Inception: Enable AutoGen agents to update/remove functions during conversations. - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_inception_function.ipynb)
4240

43-
5. **Agent Teaching and Learning**
41+
1. **Human Involvement**
42+
- Auto Code Generation, Execution, Debugging and **Human Feedback** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_human_feedback.ipynb)
43+
- Automated Task Solving with GPT-4 + **Multiple Human Users** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb)
44+
- Agent Chat with **Async Human Inputs** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/Async_human_input.ipynb)
45+
1. **Agent Teaching and Learning**
4446
- Teach Agents New Skills & Reuse via Automated Chat - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_teaching.ipynb)
4547
- Teach Agents New Facts, User Preferences and Skills Beyond Coding - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_teachability.ipynb)
4648

47-
6. **Multi-Agent Chat with OpenAI Assistants in the loop**
49+
1. **Multi-Agent Chat with OpenAI Assistants in the loop**
4850
- Hello-World Chat with OpenAi Assistant in AutoGen - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_twoagents_basic.ipynb)
4951
- Chat with OpenAI Assistant using Function Call - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_function_call.ipynb)
5052
- Chat with OpenAI Assistant with Code Interpreter - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_code_interpreter.ipynb)
5153
- Chat with OpenAI Assistant with Retrieval Augmentation - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_retrieval.ipynb)
5254
- OpenAI Assistant in a Group Chat - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_groupchat.ipynb)
5355

54-
7. **Multimodal Agent**
56+
1. **Multimodal Agent**
5557
- Multimodal Agent Chat with DALLE and GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_dalle_and_gpt4v.ipynb)
5658
- Multimodal Agent Chat with Llava - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)
5759
- Multimodal Agent Chat with GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_gpt-4v.ipynb)
60+
1. **Long Context Handling**
61+
- Conversations with Chat History Compression Enabled - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_compression.ipynb)
62+
1. **Evaluation and Assessment**
63+
- AgentEval: A Multi-Agent System for Assess Utility of LLM-powered Applications - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agenteval_cq_math.ipynb)
5864

65+
## Enhanced Inferences
66+
### Utilities
67+
- API Unification - [View Documentation with Code Example](https://microsoft.github.io/autogen/docs/Use-Cases/enhanced_inference/#api-unification)
68+
- Utility Functions to Help Managing API configurations effectively - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/oai_openai_utils.ipynb)
69+
- Cost Calculation - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/oai_client_cost.ipynb)
5970

60-
## Tune Inference Hyperparameters
71+
### Inference Hyperparameters Tuning
6172

62-
AutoGen also offers a cost-effective hyperparameter optimization technique [EcoOptiGen](https://arxiv.org/abs/2303.04673) for tuning Large Language Models. The research study finds that tuning hyperparameters can significantly improve the utility of them.
73+
AutoGen offers a cost-effective hyperparameter optimization technique [EcoOptiGen](https://arxiv.org/abs/2303.04673) for tuning Large Language Models. The research study finds that tuning hyperparameters can significantly improve the utility of them.
6374
Please find documentation about this feature [here](/docs/Use-Cases/enhanced_inference).
6475

6576
Links to notebook examples:
6677
* [Optimize for Code Generation](https://github.com/microsoft/autogen/blob/main/notebook/oai_completion.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/oai_completion.ipynb)
6778
* [Optimize for Math](https://github.com/microsoft/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb)
68-
* [Usage Estimation](https://github.com/microsoft/autogen/blob/main/notebook/oai_client_cost.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/oai_client_cost.ipynb)

0 commit comments

Comments
 (0)