|
| 1 | +import argparse |
| 2 | +import random |
| 3 | +import time |
| 4 | + |
| 5 | +import torch |
| 6 | + |
| 7 | +from vllm import attention_ops |
| 8 | + |
| 9 | +NUM_BLOCKS = 1024 |
| 10 | +PARTITION_SIZE = 512 |
| 11 | + |
| 12 | + |
| 13 | +@torch.inference_mode() |
| 14 | +def main( |
| 15 | + version: str, |
| 16 | + num_seqs: int, |
| 17 | + context_len: int, |
| 18 | + num_query_heads: int, |
| 19 | + num_kv_heads: int, |
| 20 | + head_size: int, |
| 21 | + use_alibi: bool, |
| 22 | + block_size: int, |
| 23 | + dtype: torch.dtype, |
| 24 | + seed: int, |
| 25 | + do_profile: bool, |
| 26 | +) -> None: |
| 27 | + random.seed(seed) |
| 28 | + torch.random.manual_seed(seed) |
| 29 | + torch.cuda.manual_seed(seed) |
| 30 | + |
| 31 | + scale = float(1.0 / (head_size**0.5)) |
| 32 | + query = torch.empty(num_seqs, |
| 33 | + num_query_heads, |
| 34 | + head_size, |
| 35 | + dtype=dtype, |
| 36 | + device="cuda") |
| 37 | + query.uniform_(-scale, scale) |
| 38 | + |
| 39 | + assert num_query_heads % num_kv_heads == 0 |
| 40 | + num_queries_per_kv = num_query_heads // num_kv_heads |
| 41 | + head_mapping = torch.repeat_interleave( |
| 42 | + torch.arange(num_kv_heads, dtype=torch.int32, device="cuda"), |
| 43 | + num_queries_per_kv) |
| 44 | + alibi_slopes = None |
| 45 | + if use_alibi: |
| 46 | + alibi_slopes = torch.randn(num_query_heads, |
| 47 | + dtype=torch.float, |
| 48 | + device="cuda") |
| 49 | + |
| 50 | + context_lens = [context_len for _ in range(num_seqs)] |
| 51 | + max_context_len = max(context_lens) |
| 52 | + context_lens = torch.tensor(context_lens, dtype=torch.int, device="cuda") |
| 53 | + |
| 54 | + # Create the block tables. |
| 55 | + max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size |
| 56 | + block_tables = [] |
| 57 | + for _ in range(num_seqs): |
| 58 | + block_table = [ |
| 59 | + random.randint(0, NUM_BLOCKS - 1) |
| 60 | + for _ in range(max_num_blocks_per_seq) |
| 61 | + ] |
| 62 | + block_tables.append(block_table) |
| 63 | + block_tables = torch.tensor(block_tables, dtype=torch.int, device="cuda") |
| 64 | + |
| 65 | + # Create the KV cache. |
| 66 | + x = 16 // torch.tensor([], dtype=dtype).element_size() |
| 67 | + key_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size // x, block_size, x) |
| 68 | + key_cache = torch.empty(size=key_cache_shape, dtype=dtype, device="cuda") |
| 69 | + key_cache.uniform_(-scale, scale) |
| 70 | + value_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size, block_size) |
| 71 | + value_cache = torch.empty(size=value_cache_shape, |
| 72 | + dtype=dtype, |
| 73 | + device="cuda") |
| 74 | + value_cache.uniform_(-scale, scale) |
| 75 | + |
| 76 | + # Prepare for the paged attention kernel. |
| 77 | + output = torch.empty_like(query) |
| 78 | + if version == "v2": |
| 79 | + num_partitions = ((max_context_len + PARTITION_SIZE - 1) // |
| 80 | + PARTITION_SIZE) |
| 81 | + tmp_output = torch.empty( |
| 82 | + size=(num_seqs, num_query_heads, num_partitions, head_size), |
| 83 | + dtype=output.dtype, |
| 84 | + device=output.device, |
| 85 | + ) |
| 86 | + exp_sums = torch.empty( |
| 87 | + size=(num_seqs, num_query_heads, num_partitions), |
| 88 | + dtype=torch.float32, |
| 89 | + device=output.device, |
| 90 | + ) |
| 91 | + max_logits = torch.empty_like(exp_sums) |
| 92 | + |
| 93 | + def run_benchmark(num_iters: int, profile: bool = False) -> float: |
| 94 | + torch.cuda.synchronize() |
| 95 | + if profile: |
| 96 | + torch.cuda.cudart().cudaProfilerStart() |
| 97 | + start_time = time.perf_counter() |
| 98 | + |
| 99 | + for _ in range(num_iters): |
| 100 | + if version == "v1": |
| 101 | + attention_ops.paged_attention_v1( |
| 102 | + output, |
| 103 | + query, |
| 104 | + key_cache, |
| 105 | + value_cache, |
| 106 | + head_mapping, |
| 107 | + scale, |
| 108 | + block_tables, |
| 109 | + context_lens, |
| 110 | + block_size, |
| 111 | + max_context_len, |
| 112 | + alibi_slopes, |
| 113 | + ) |
| 114 | + elif version == "v2": |
| 115 | + attention_ops.paged_attention_v2( |
| 116 | + output, |
| 117 | + exp_sums, |
| 118 | + max_logits, |
| 119 | + tmp_output, |
| 120 | + query, |
| 121 | + key_cache, |
| 122 | + value_cache, |
| 123 | + head_mapping, |
| 124 | + scale, |
| 125 | + block_tables, |
| 126 | + context_lens, |
| 127 | + block_size, |
| 128 | + max_context_len, |
| 129 | + alibi_slopes, |
| 130 | + ) |
| 131 | + else: |
| 132 | + raise ValueError(f"Invalid version: {version}") |
| 133 | + torch.cuda.synchronize() |
| 134 | + |
| 135 | + end_time = time.perf_counter() |
| 136 | + if profile: |
| 137 | + torch.cuda.cudart().cudaProfilerStart() |
| 138 | + return (end_time - start_time) / num_iters |
| 139 | + |
| 140 | + # Warmup. |
| 141 | + print("Warming up...") |
| 142 | + run_benchmark(num_iters=3, profile=False) |
| 143 | + |
| 144 | + # Benchmark. |
| 145 | + if do_profile: |
| 146 | + latency = run_benchmark(num_iters=1, profile=True) |
| 147 | + else: |
| 148 | + latency = run_benchmark(num_iters=100, profile=False) |
| 149 | + print(f"Kernel running time: {latency * 1000000:.3f} us") |
| 150 | + |
| 151 | + |
| 152 | +if __name__ == '__main__': |
| 153 | + parser = argparse.ArgumentParser( |
| 154 | + description="Benchmark the paged attention kernel.") |
| 155 | + parser.add_argument("--version", |
| 156 | + type=str, |
| 157 | + choices=["v1", "v2"], |
| 158 | + default="v2") |
| 159 | + parser.add_argument("--batch-size", type=int, default=8) |
| 160 | + parser.add_argument("--context-len", type=int, default=4096) |
| 161 | + parser.add_argument("--num-query-heads", type=int, default=64) |
| 162 | + parser.add_argument("--num-kv-heads", type=int, default=8) |
| 163 | + parser.add_argument("--head-size", |
| 164 | + type=int, |
| 165 | + choices=[64, 80, 96, 112, 128, 256], |
| 166 | + default=128) |
| 167 | + parser.add_argument("--block-size", type=int, choices=[16, 32], default=16) |
| 168 | + parser.add_argument("--use-alibi", action="store_true") |
| 169 | + parser.add_argument("--dtype", |
| 170 | + type=str, |
| 171 | + choices=["half", "bfloat16", "float"], |
| 172 | + default="half") |
| 173 | + parser.add_argument("--seed", type=int, default=0) |
| 174 | + parser.add_argument("--profile", action="store_true") |
| 175 | + args = parser.parse_args() |
| 176 | + print(args) |
| 177 | + |
| 178 | + if args.num_query_heads % args.num_kv_heads != 0: |
| 179 | + raise ValueError("num_query_heads must be divisible by num_kv_heads") |
| 180 | + dtype_to_torch_dtype = { |
| 181 | + "half": torch.half, |
| 182 | + "bfloat16": torch.bfloat16, |
| 183 | + "float": torch.float, |
| 184 | + } |
| 185 | + main( |
| 186 | + version=args.version, |
| 187 | + num_seqs=args.batch_size, |
| 188 | + context_len=args.context_len, |
| 189 | + num_query_heads=args.num_query_heads, |
| 190 | + num_kv_heads=args.num_kv_heads, |
| 191 | + head_size=args.head_size, |
| 192 | + block_size=args.block_size, |
| 193 | + use_alibi=args.use_alibi, |
| 194 | + dtype=dtype_to_torch_dtype[args.dtype], |
| 195 | + seed=args.seed, |
| 196 | + do_profile=args.profile, |
| 197 | + ) |
0 commit comments