Skip to content

Commit efabb18

Browse files
Update nvidia-physical-ai.md (#2750)
Quotes formatting
1 parent 9a4d8d8 commit efabb18

File tree

1 file changed

+1
-31
lines changed

1 file changed

+1
-31
lines changed

nvidia-physical-ai.md

Lines changed: 1 addition & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -43,23 +43,6 @@ The model is built by training individual ControlNets separately for each sensor
4343
</div>
4444
<p style="text-align: center; font-style: italic;">Input types include 3D bounding box map, Trajectory map, Depth map, Segmentation map.</p>
4545

46-
| ![Cosmos Transfer input types](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/physical-ai/3D_bounding_box_map.gif) |
47-
| :--: |
48-
| *Input types include 3D bounding box map, Trajectory map, Depth map, Segmentation map.* |
49-
50-
| ![Cosmos Transfer input types](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/physical-ai/trajectory_map.gif) |
51-
| :--: |
52-
| *Input types include 3D bounding box map, Trajectory map, Depth map, Segmentation map.* |
53-
54-
| ![Cosmos Transfer input types](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/physical-ai/depth_map.gif) |
55-
| :--: |
56-
| *Input types include 3D bounding box map, Trajectory map, Depth map, Segmentation map.* |
57-
58-
| ![Cosmos Transfer input types](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/physical-ai/segmentation_map.gif) |
59-
| :--: |
60-
| *Input types include 3D bounding box map, Trajectory map, Depth map, Segmentation map.* |
61-
62-
6346
- At inference time, developers can use various input types, including structured visual or geometric data such as segmentation maps, depth maps, edge maps, human motion keypoints, LiDAR scans, trajectories, HD maps, and 3D bounding boxes to guide the output.
6447
- The control signals from each control branch are multiplied by their corresponding adaptive spatiotemporal control maps and then summed before being added to the transformer blocks of the base model.
6548
- The generated output is photorealistic video sequences with controlled layout, object placement, and motion. Developers can control the output in multiple ways, such as preserving structure and appearance or allowing appearance variations while maintaining structure.
@@ -71,19 +54,6 @@ The model is built by training individual ControlNets separately for each sensor
7154
</div>
7255
<p style="text-align: center; font-style: italic;">Outputs from Cosmos Transfer varying environments and weather conditions.</p>
7356

74-
| ![Cosmos Transfer output](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/physical-ai/output_1.gif) |
75-
| :--: |
76-
| *Outputs from Cosmos Transfer varying environments and weather conditions.* |
77-
78-
| ![Cosmos Transfer output](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/physical-ai/output_2.gif) |
79-
| :--: |
80-
| *Outputs from Cosmos Transfer varying environments and weather conditions.* |
81-
82-
| ![Cosmos Transfer output](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/physical-ai/output_3.gif) |
83-
| :--: |
84-
| *Outputs from Cosmos Transfer varying environments and weather conditions.* |
85-
86-
8757
Cosmos Transfer coupled with the NVIDIA Omniverse platform is driving controllable synthetic data generation for robotics and autonomous vehicle development at scale. Find more Cosmos Transfer [Examples](https://github.com/nvidia-cosmos/cosmos-transfer1#examples) on GitHub.
8858

8959
Cosmos Transfer [samples](https://huggingface.co/nvidia/Cosmos-Transfer1-7B-Sample-AV) built using post-training base model are also available for autonomous vehicles.
@@ -115,4 +85,4 @@ Check out GitHub for [Cosmos Predict](https://github.com/nvidia-cosmos/cosmos-pr
11585

11686
The NVIDIA Isaac GR00T-N1-2B model is available on [Hugging Face](https://huggingface.co/nvidia/GR00T-N1-2B). Sample datasets and PyTorch scripts for post-training using custom user datasets, which is compatible with the Hugging Face LeRobot format are available on [GitHub](http://github.com/NVIDIA/Isaac-GR00T). For more information about the Isaac GR00T N1 model, see the [research paper](https://research.nvidia.com/publication/2025-03_nvidia-isaac-gr00t-n1-open-foundation-model-humanoid-robots).
11787

118-
Follow [NVIDIA on Hugging Face](https://huggingface.co/nvidia) for more updates.
88+
Follow [NVIDIA on Hugging Face](https://huggingface.co/nvidia) for more updates.

0 commit comments

Comments
 (0)