-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathtest_controlnet_flux.py
252 lines (210 loc) · 7.98 KB
/
test_controlnet_flux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# coding=utf-8
# Copyright 2024 HuggingFace Inc and The InstantX Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import pytest
import torch
from huggingface_hub import hf_hub_download
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
FluxControlNetPipeline,
FluxTransformer2DModel,
)
from diffusers.models import FluxControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
nightly,
numpy_cosine_similarity_distance,
require_big_gpu_with_torch_cuda,
slow,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = FluxControlNetPipeline
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
batch_params = frozenset(["prompt"])
def get_dummy_components(self):
torch.manual_seed(0)
transformer = FluxTransformer2DModel(
patch_size=1,
in_channels=16,
num_layers=1,
num_single_layers=1,
attention_head_dim=16,
num_attention_heads=2,
joint_attention_dim=32,
pooled_projection_dim=32,
axes_dims_rope=[4, 4, 8],
)
torch.manual_seed(0)
controlnet = FluxControlNetModel(
patch_size=1,
in_channels=16,
num_layers=1,
num_single_layers=1,
attention_head_dim=16,
num_attention_heads=2,
joint_attention_dim=32,
pooled_projection_dim=32,
axes_dims_rope=[4, 4, 8],
)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
torch.manual_seed(0)
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
vae = AutoencoderKL(
sample_size=32,
in_channels=3,
out_channels=3,
block_out_channels=(4,),
layers_per_block=1,
latent_channels=4,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
shift_factor=0.0609,
scaling_factor=1.5035,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"transformer": transformer,
"vae": vae,
"controlnet": controlnet,
}
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
control_image = randn_tensor(
(1, 3, 32, 32),
generator=generator,
device=torch.device(device),
dtype=torch.float16,
)
controlnet_conditioning_scale = 0.5
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 3.5,
"output_type": "np",
"control_image": control_image,
"controlnet_conditioning_scale": controlnet_conditioning_scale,
}
return inputs
def test_controlnet_flux(self):
components = self.get_dummy_components()
flux_pipe = FluxControlNetPipeline(**components)
flux_pipe = flux_pipe.to(torch_device, dtype=torch.float16)
flux_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = flux_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array(
[0.7348633, 0.41333008, 0.6621094, 0.5444336, 0.47607422, 0.5859375, 0.44677734, 0.4506836, 0.40454102]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f"Expected: {expected_slice}, got: {image_slice.flatten()}"
@unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
def test_xformers_attention_forwardGenerator_pass(self):
pass
@slow
@nightly
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
class FluxControlNetPipelineSlowTests(unittest.TestCase):
pipeline_class = FluxControlNetPipeline
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_canny(self):
controlnet = FluxControlNetModel.from_pretrained(
"InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16
)
pipe = FluxControlNetPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
text_encoder=None,
text_encoder_2=None,
controlnet=controlnet,
torch_dtype=torch.bfloat16,
).to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
control_image = load_image(
"https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg"
).resize((512, 512))
prompt_embeds = torch.load(
hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
).to(torch_device)
pooled_prompt_embeds = torch.load(
hf_hub_download(
repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
)
).to(torch_device)
output = pipe(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
control_image=control_image,
controlnet_conditioning_scale=0.6,
num_inference_steps=2,
guidance_scale=3.5,
max_sequence_length=256,
output_type="np",
height=512,
width=512,
generator=generator,
)
image = output.images[0]
assert image.shape == (512, 512, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array([0.2734, 0.2852, 0.2852, 0.2734, 0.2754, 0.2891, 0.2617, 0.2637, 0.2773])
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2