|
| 1 | +import torch |
| 2 | + |
| 3 | +from diffusers import SASolverScheduler |
| 4 | +from diffusers.utils.testing_utils import require_torchsde, torch_device |
| 5 | + |
| 6 | +from .test_schedulers import SchedulerCommonTest |
| 7 | + |
| 8 | + |
| 9 | +@require_torchsde |
| 10 | +class SASolverSchedulerTest(SchedulerCommonTest): |
| 11 | + scheduler_classes = (SASolverScheduler,) |
| 12 | + num_inference_steps = 10 |
| 13 | + |
| 14 | + def get_scheduler_config(self, **kwargs): |
| 15 | + config = { |
| 16 | + "num_train_timesteps": 1100, |
| 17 | + "beta_start": 0.0001, |
| 18 | + "beta_end": 0.02, |
| 19 | + "beta_schedule": "linear", |
| 20 | + } |
| 21 | + |
| 22 | + config.update(**kwargs) |
| 23 | + return config |
| 24 | + |
| 25 | + def test_timesteps(self): |
| 26 | + for timesteps in [10, 50, 100, 1000]: |
| 27 | + self.check_over_configs(num_train_timesteps=timesteps) |
| 28 | + |
| 29 | + def test_betas(self): |
| 30 | + for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): |
| 31 | + self.check_over_configs(beta_start=beta_start, beta_end=beta_end) |
| 32 | + |
| 33 | + def test_schedules(self): |
| 34 | + for schedule in ["linear", "scaled_linear"]: |
| 35 | + self.check_over_configs(beta_schedule=schedule) |
| 36 | + |
| 37 | + def test_prediction_type(self): |
| 38 | + for prediction_type in ["epsilon", "v_prediction"]: |
| 39 | + self.check_over_configs(prediction_type=prediction_type) |
| 40 | + |
| 41 | + def test_full_loop_no_noise(self): |
| 42 | + scheduler_class = self.scheduler_classes[0] |
| 43 | + scheduler_config = self.get_scheduler_config() |
| 44 | + scheduler = scheduler_class(**scheduler_config) |
| 45 | + |
| 46 | + scheduler.set_timesteps(self.num_inference_steps) |
| 47 | + |
| 48 | + model = self.dummy_model() |
| 49 | + sample = self.dummy_sample_deter * scheduler.init_noise_sigma |
| 50 | + sample = sample.to(torch_device) |
| 51 | + |
| 52 | + for i, t in enumerate(scheduler.timesteps): |
| 53 | + sample = scheduler.scale_model_input(sample, t) |
| 54 | + |
| 55 | + model_output = model(sample, t) |
| 56 | + |
| 57 | + output = scheduler.step(model_output, t, sample) |
| 58 | + sample = output.prev_sample |
| 59 | + |
| 60 | + result_sum = torch.sum(torch.abs(sample)) |
| 61 | + result_mean = torch.mean(torch.abs(sample)) |
| 62 | + |
| 63 | + if torch_device in ["mps"]: |
| 64 | + assert abs(result_sum.item() - 167.47821044921875) < 1e-2 |
| 65 | + assert abs(result_mean.item() - 0.2178705964565277) < 1e-3 |
| 66 | + elif torch_device in ["cuda"]: |
| 67 | + assert abs(result_sum.item() - 171.59352111816406) < 1e-2 |
| 68 | + assert abs(result_mean.item() - 0.22342906892299652) < 1e-3 |
| 69 | + else: |
| 70 | + assert abs(result_sum.item() - 162.52383422851562) < 1e-2 |
| 71 | + assert abs(result_mean.item() - 0.211619570851326) < 1e-3 |
| 72 | + |
| 73 | + def test_full_loop_with_v_prediction(self): |
| 74 | + scheduler_class = self.scheduler_classes[0] |
| 75 | + scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") |
| 76 | + scheduler = scheduler_class(**scheduler_config) |
| 77 | + |
| 78 | + scheduler.set_timesteps(self.num_inference_steps) |
| 79 | + |
| 80 | + model = self.dummy_model() |
| 81 | + sample = self.dummy_sample_deter * scheduler.init_noise_sigma |
| 82 | + sample = sample.to(torch_device) |
| 83 | + |
| 84 | + for i, t in enumerate(scheduler.timesteps): |
| 85 | + sample = scheduler.scale_model_input(sample, t) |
| 86 | + |
| 87 | + model_output = model(sample, t) |
| 88 | + |
| 89 | + output = scheduler.step(model_output, t, sample) |
| 90 | + sample = output.prev_sample |
| 91 | + |
| 92 | + result_sum = torch.sum(torch.abs(sample)) |
| 93 | + result_mean = torch.mean(torch.abs(sample)) |
| 94 | + |
| 95 | + if torch_device in ["mps"]: |
| 96 | + assert abs(result_sum.item() - 124.77149200439453) < 1e-2 |
| 97 | + assert abs(result_mean.item() - 0.16226289014816284) < 1e-3 |
| 98 | + elif torch_device in ["cuda"]: |
| 99 | + assert abs(result_sum.item() - 128.1663360595703) < 1e-2 |
| 100 | + assert abs(result_mean.item() - 0.16688326001167297) < 1e-3 |
| 101 | + else: |
| 102 | + assert abs(result_sum.item() - 119.8487548828125) < 1e-2 |
| 103 | + assert abs(result_mean.item() - 0.1560530662536621) < 1e-3 |
| 104 | + |
| 105 | + def test_full_loop_device(self): |
| 106 | + scheduler_class = self.scheduler_classes[0] |
| 107 | + scheduler_config = self.get_scheduler_config() |
| 108 | + scheduler = scheduler_class(**scheduler_config) |
| 109 | + |
| 110 | + scheduler.set_timesteps(self.num_inference_steps, device=torch_device) |
| 111 | + |
| 112 | + model = self.dummy_model() |
| 113 | + sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma |
| 114 | + |
| 115 | + for t in scheduler.timesteps: |
| 116 | + sample = scheduler.scale_model_input(sample, t) |
| 117 | + |
| 118 | + model_output = model(sample, t) |
| 119 | + |
| 120 | + output = scheduler.step(model_output, t, sample) |
| 121 | + sample = output.prev_sample |
| 122 | + |
| 123 | + result_sum = torch.sum(torch.abs(sample)) |
| 124 | + result_mean = torch.mean(torch.abs(sample)) |
| 125 | + |
| 126 | + if torch_device in ["mps"]: |
| 127 | + assert abs(result_sum.item() - 167.46957397460938) < 1e-2 |
| 128 | + assert abs(result_mean.item() - 0.21805934607982635) < 1e-3 |
| 129 | + elif torch_device in ["cuda"]: |
| 130 | + assert abs(result_sum.item() - 171.59353637695312) < 1e-2 |
| 131 | + assert abs(result_mean.item() - 0.22342908382415771) < 1e-3 |
| 132 | + else: |
| 133 | + assert abs(result_sum.item() - 162.52383422851562) < 1e-2 |
| 134 | + assert abs(result_mean.item() - 0.211619570851326) < 1e-3 |
| 135 | + |
| 136 | + def test_full_loop_device_karras_sigmas(self): |
| 137 | + scheduler_class = self.scheduler_classes[0] |
| 138 | + scheduler_config = self.get_scheduler_config() |
| 139 | + scheduler = scheduler_class(**scheduler_config, use_karras_sigmas=True) |
| 140 | + |
| 141 | + scheduler.set_timesteps(self.num_inference_steps, device=torch_device) |
| 142 | + |
| 143 | + model = self.dummy_model() |
| 144 | + sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma |
| 145 | + sample = sample.to(torch_device) |
| 146 | + |
| 147 | + for t in scheduler.timesteps: |
| 148 | + sample = scheduler.scale_model_input(sample, t) |
| 149 | + |
| 150 | + model_output = model(sample, t) |
| 151 | + |
| 152 | + output = scheduler.step(model_output, t, sample) |
| 153 | + sample = output.prev_sample |
| 154 | + |
| 155 | + result_sum = torch.sum(torch.abs(sample)) |
| 156 | + result_mean = torch.mean(torch.abs(sample)) |
| 157 | + |
| 158 | + if torch_device in ["mps"]: |
| 159 | + assert abs(result_sum.item() - 176.66974135742188) < 1e-2 |
| 160 | + assert abs(result_mean.item() - 0.23003872730981811) < 1e-2 |
| 161 | + elif torch_device in ["cuda"]: |
| 162 | + assert abs(result_sum.item() - 177.63653564453125) < 1e-2 |
| 163 | + assert abs(result_mean.item() - 0.23003872730981811) < 1e-2 |
| 164 | + else: |
| 165 | + assert abs(result_sum.item() - 170.3135223388672) < 1e-2 |
| 166 | + assert abs(result_mean.item() - 0.23003872730981811) < 1e-2 |
0 commit comments