Skip to content

Commit 2db090d

Browse files
authored
Merge pull request #1 from huggingface/add-glide
Add glide modeling files
2 parents 1a6196e + 111fa99 commit 2db090d

File tree

5 files changed

+704
-0
lines changed

5 files changed

+704
-0
lines changed

models/vision/glide/modeling_glide.py

+59
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,59 @@
1+
# Copyright 2022 The HuggingFace Team. All rights reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
14+
# limitations under the License.
15+
16+
17+
from diffusers import DiffusionPipeline
18+
from diffusers import UNetGLIDEModel
19+
20+
import tqdm
21+
import torch
22+
23+
24+
class GLIDE(DiffusionPipeline):
25+
def __init__(self, unet: UNetGLIDEModel, noise_scheduler):
26+
super().__init__()
27+
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
28+
29+
def __call__(self, generator=None, torch_device=None):
30+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
31+
32+
self.unet.to(torch_device)
33+
# 1. Sample gaussian noise
34+
image = self.noise_scheduler.sample_noise((1, self.unet.in_channels, self.unet.resolution, self.unet.resolution), device=torch_device, generator=generator)
35+
for t in tqdm.tqdm(reversed(range(len(self.noise_scheduler))), total=len(self.noise_scheduler)):
36+
# i) define coefficients for time step t
37+
clip_image_coeff = 1 / torch.sqrt(self.noise_scheduler.get_alpha_prod(t))
38+
clip_noise_coeff = torch.sqrt(1 / self.noise_scheduler.get_alpha_prod(t) - 1)
39+
image_coeff = (1 - self.noise_scheduler.get_alpha_prod(t - 1)) * torch.sqrt(self.noise_scheduler.get_alpha(t)) / (1 - self.noise_scheduler.get_alpha_prod(t))
40+
clip_coeff = torch.sqrt(self.noise_scheduler.get_alpha_prod(t - 1)) * self.noise_scheduler.get_beta(t) / (1 - self.noise_scheduler.get_alpha_prod(t))
41+
42+
# ii) predict noise residual
43+
with torch.no_grad():
44+
noise_residual = self.unet(image, t)
45+
46+
# iii) compute predicted image from residual
47+
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
48+
pred_mean = clip_image_coeff * image - clip_noise_coeff * noise_residual
49+
pred_mean = torch.clamp(pred_mean, -1, 1)
50+
prev_image = clip_coeff * pred_mean + image_coeff * image
51+
52+
# iv) sample variance
53+
prev_variance = self.noise_scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
54+
55+
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
56+
sampled_prev_image = prev_image + prev_variance
57+
image = sampled_prev_image
58+
59+
return image
File renamed without changes.

src/diffusers/__init__.py

+1
Original file line numberDiff line numberDiff line change
@@ -6,5 +6,6 @@
66

77
from .modeling_utils import ModelMixin
88
from .models.unet import UNetModel
9+
from .models.unet_glide import UNetGLIDEModel
910
from .pipeline_utils import DiffusionPipeline
1011
from .schedulers.gaussian_ddpm import GaussianDDPMScheduler

src/diffusers/models/__init__.py

+1
Original file line numberDiff line numberDiff line change
@@ -17,3 +17,4 @@
1717
# limitations under the License.
1818

1919
from .unet import UNetModel
20+
from .unet_glide import UNetGLIDEModel

0 commit comments

Comments
 (0)