Skip to content

Commit b909f7e

Browse files
authored
Merge branch 'main' into integrations/cosmos
2 parents 0c3f56f + 41afb66 commit b909f7e

File tree

52 files changed

+4804
-302
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

52 files changed

+4804
-302
lines changed

.github/workflows/pr_style_bot.yml

-34
Original file line numberDiff line numberDiff line change
@@ -13,39 +13,5 @@ jobs:
1313
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
1414
with:
1515
python_quality_dependencies: "[quality]"
16-
pre_commit_script_name: "Download and Compare files from the main branch"
17-
pre_commit_script: |
18-
echo "Downloading the files from the main branch"
19-
20-
curl -o main_Makefile https://raw.githubusercontent.com/huggingface/diffusers/main/Makefile
21-
curl -o main_setup.py https://raw.githubusercontent.com/huggingface/diffusers/refs/heads/main/setup.py
22-
curl -o main_check_doc_toc.py https://raw.githubusercontent.com/huggingface/diffusers/refs/heads/main/utils/check_doc_toc.py
23-
24-
echo "Compare the files and raise error if needed"
25-
26-
diff_failed=0
27-
if ! diff -q main_Makefile Makefile; then
28-
echo "Error: The Makefile has changed. Please ensure it matches the main branch."
29-
diff_failed=1
30-
fi
31-
32-
if ! diff -q main_setup.py setup.py; then
33-
echo "Error: The setup.py has changed. Please ensure it matches the main branch."
34-
diff_failed=1
35-
fi
36-
37-
if ! diff -q main_check_doc_toc.py utils/check_doc_toc.py; then
38-
echo "Error: The utils/check_doc_toc.py has changed. Please ensure it matches the main branch."
39-
diff_failed=1
40-
fi
41-
42-
if [ $diff_failed -eq 1 ]; then
43-
echo "❌ Error happened as we detected changes in the files that should not be changed ❌"
44-
exit 1
45-
fi
46-
47-
echo "No changes in the files. Proceeding..."
48-
rm -rf main_Makefile main_setup.py main_check_doc_toc.py
49-
style_command: "make style && make quality"
5016
secrets:
5117
bot_token: ${{ secrets.GITHUB_TOKEN }}

docs/source/en/api/pipelines/ltx_video.md

+1
Original file line numberDiff line numberDiff line change
@@ -32,6 +32,7 @@ Available models:
3232
|:-------------:|:-----------------:|
3333
| [`LTX Video 0.9.0`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.safetensors) | `torch.bfloat16` |
3434
| [`LTX Video 0.9.1`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) | `torch.bfloat16` |
35+
| [`LTX Video 0.9.5`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.5.safetensors) | `torch.bfloat16` |
3536

3637
Note: The recommended dtype is for the transformer component. The VAE and text encoders can be either `torch.float32`, `torch.bfloat16` or `torch.float16` but the recommended dtype is `torch.bfloat16` as used in the original repository.
3738

docs/source/en/api/pipelines/wan.md

+394-11
Large diffs are not rendered by default.

docs/source/en/installation.md

+7-5
Original file line numberDiff line numberDiff line change
@@ -161,10 +161,10 @@ Your Python environment will find the `main` version of 🤗 Diffusers on the ne
161161

162162
Model weights and files are downloaded from the Hub to a cache which is usually your home directory. You can change the cache location by specifying the `HF_HOME` or `HUGGINFACE_HUB_CACHE` environment variables or configuring the `cache_dir` parameter in methods like [`~DiffusionPipeline.from_pretrained`].
163163

164-
Cached files allow you to run 🤗 Diffusers offline. To prevent 🤗 Diffusers from connecting to the internet, set the `HF_HUB_OFFLINE` environment variable to `True` and 🤗 Diffusers will only load previously downloaded files in the cache.
164+
Cached files allow you to run 🤗 Diffusers offline. To prevent 🤗 Diffusers from connecting to the internet, set the `HF_HUB_OFFLINE` environment variable to `1` and 🤗 Diffusers will only load previously downloaded files in the cache.
165165

166166
```shell
167-
export HF_HUB_OFFLINE=True
167+
export HF_HUB_OFFLINE=1
168168
```
169169

170170
For more details about managing and cleaning the cache, take a look at the [caching](https://huggingface.co/docs/huggingface_hub/guides/manage-cache) guide.
@@ -179,14 +179,16 @@ Telemetry is only sent when loading models and pipelines from the Hub,
179179
and it is not collected if you're loading local files.
180180

181181
We understand that not everyone wants to share additional information,and we respect your privacy.
182-
You can disable telemetry collection by setting the `DISABLE_TELEMETRY` environment variable from your terminal:
182+
You can disable telemetry collection by setting the `HF_HUB_DISABLE_TELEMETRY` environment variable from your terminal:
183183

184184
On Linux/MacOS:
185+
185186
```bash
186-
export DISABLE_TELEMETRY=YES
187+
export HF_HUB_DISABLE_TELEMETRY=1
187188
```
188189

189190
On Windows:
191+
190192
```bash
191-
set DISABLE_TELEMETRY=YES
193+
set HF_HUB_DISABLE_TELEMETRY=1
192194
```

docs/source/en/using-diffusers/loading.md

+17
Original file line numberDiff line numberDiff line change
@@ -95,6 +95,23 @@ Use the Space below to gauge a pipeline's memory requirements before you downloa
9595
></iframe>
9696
</div>
9797

98+
### Specifying Component-Specific Data Types
99+
100+
You can customize the data types for individual sub-models by passing a dictionary to the `torch_dtype` parameter. This allows you to load different components of a pipeline in different floating point precisions. For instance, if you want to load the transformer with `torch.bfloat16` and all other components with `torch.float16`, you can pass a dictionary mapping:
101+
102+
```python
103+
from diffusers import HunyuanVideoPipeline
104+
import torch
105+
106+
pipe = HunyuanVideoPipeline.from_pretrained(
107+
"hunyuanvideo-community/HunyuanVideo",
108+
torch_dtype={'transformer': torch.bfloat16, 'default': torch.float16},
109+
)
110+
print(pipe.transformer.dtype, pipe.vae.dtype) # (torch.bfloat16, torch.float16)
111+
```
112+
113+
If a component is not explicitly specified in the dictionary and no `default` is provided, it will be loaded with `torch.float32`.
114+
98115
### Local pipeline
99116

100117
To load a pipeline locally, use [git-lfs](https://git-lfs.github.com/) to manually download a checkpoint to your local disk.

examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py

+32-33
Original file line numberDiff line numberDiff line change
@@ -71,6 +71,7 @@
7171
convert_unet_state_dict_to_peft,
7272
is_wandb_available,
7373
)
74+
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
7475
from diffusers.utils.import_utils import is_xformers_available
7576
from diffusers.utils.torch_utils import is_compiled_module
7677

@@ -101,7 +102,7 @@ def determine_scheduler_type(pretrained_model_name_or_path, revision):
101102
def save_model_card(
102103
repo_id: str,
103104
use_dora: bool,
104-
images=None,
105+
images: list = None,
105106
base_model: str = None,
106107
train_text_encoder=False,
107108
train_text_encoder_ti=False,
@@ -111,20 +112,17 @@ def save_model_card(
111112
repo_folder=None,
112113
vae_path=None,
113114
):
114-
img_str = "widget:\n"
115115
lora = "lora" if not use_dora else "dora"
116-
for i, image in enumerate(images):
117-
image.save(os.path.join(repo_folder, f"image_{i}.png"))
118-
img_str += f"""
119-
- text: '{validation_prompt if validation_prompt else ' ' }'
120-
output:
121-
url:
122-
"image_{i}.png"
123-
"""
124-
if not images:
125-
img_str += f"""
126-
- text: '{instance_prompt}'
127-
"""
116+
117+
widget_dict = []
118+
if images is not None:
119+
for i, image in enumerate(images):
120+
image.save(os.path.join(repo_folder, f"image_{i}.png"))
121+
widget_dict.append(
122+
{"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}}
123+
)
124+
else:
125+
widget_dict.append({"text": instance_prompt})
128126
embeddings_filename = f"{repo_folder}_emb"
129127
instance_prompt_webui = re.sub(r"<s\d+>", "", re.sub(r"<s\d+>", embeddings_filename, instance_prompt, count=1))
130128
ti_keys = ", ".join(f'"{match}"' for match in re.findall(r"<s\d+>", instance_prompt))
@@ -169,23 +167,7 @@ def save_model_card(
169167
to trigger concept `{key}` → use `{tokens}` in your prompt \n
170168
"""
171169

172-
yaml = f"""---
173-
tags:
174-
- stable-diffusion-xl
175-
- stable-diffusion-xl-diffusers
176-
- diffusers-training
177-
- text-to-image
178-
- diffusers
179-
- {lora}
180-
- template:sd-lora
181-
{img_str}
182-
base_model: {base_model}
183-
instance_prompt: {instance_prompt}
184-
license: openrail++
185-
---
186-
"""
187-
188-
model_card = f"""
170+
model_description = f"""
189171
# SDXL LoRA DreamBooth - {repo_id}
190172
191173
<Gallery />
@@ -234,8 +216,25 @@ def save_model_card(
234216
235217
{license}
236218
"""
237-
with open(os.path.join(repo_folder, "README.md"), "w") as f:
238-
f.write(yaml + model_card)
219+
model_card = load_or_create_model_card(
220+
repo_id_or_path=repo_id,
221+
from_training=True,
222+
license="openrail++",
223+
base_model=base_model,
224+
prompt=instance_prompt,
225+
model_description=model_description,
226+
widget=widget_dict,
227+
)
228+
tags = [
229+
"text-to-image",
230+
"stable-diffusion-xl",
231+
"stable-diffusion-xl-diffusers",
232+
"text-to-image",
233+
"diffusers",
234+
lora,
235+
"template:sd-lora",
236+
]
237+
model_card = populate_model_card(model_card, tags=tags)
239238

240239

241240
def log_validation(

examples/community/README.md

+102-3
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
1010

1111
| Example | Description | Code Example | Colab | Author |
1212
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
13-
|Spatiotemporal Skip Guidance (STG)|[Spatiotemporal Skip Guidance for Enhanced Video Diffusion Sampling](https://arxiv.org/abs/2411.18664) (CVPR 2025) enhances video diffusion models by generating a weaker model through layer skipping and using it as guidance, improving fidelity in models like HunyuanVideo, LTXVideo, and Mochi.|[Spatiotemporal Skip Guidance](#spatiotemporal-skip-guidance)|-|[Junha Hyung](https://junhahyung.github.io/), [Kinam Kim](https://kinam0252.github.io/)|
13+
|Spatiotemporal Skip Guidance (STG)|[Spatiotemporal Skip Guidance for Enhanced Video Diffusion Sampling](https://arxiv.org/abs/2411.18664) (CVPR 2025) enhances video diffusion models by generating a weaker model through layer skipping and using it as guidance, improving fidelity in models like HunyuanVideo, LTXVideo, and Mochi.|[Spatiotemporal Skip Guidance](#spatiotemporal-skip-guidance)|-|[Junha Hyung](https://junhahyung.github.io/), [Kinam Kim](https://kinam0252.github.io/), and [Ednaordinary](https://github.com/Ednaordinary)|
1414
|Adaptive Mask Inpainting|Adaptive Mask Inpainting algorithm from [Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models](https://github.com/snuvclab/coma) (ECCV '24, Oral) provides a way to insert human inside the scene image without altering the background, by inpainting with adapting mask.|[Adaptive Mask Inpainting](#adaptive-mask-inpainting)|-|[Hyeonwoo Kim](https://sshowbiz.xyz),[Sookwan Han](https://jellyheadandrew.github.io)|
1515
|Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/flux_with_cfg.ipynb)|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
1616
|Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/exx8/differential-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
@@ -85,7 +85,7 @@ PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixar
8585
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
8686
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
8787
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
88-
88+
| FaithDiff Stable Diffusion XL Pipeline | Implementation of [(CVPR 2025) FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolutionUnleashing Diffusion Priors for Faithful Image Super-resolution](https://arxiv.org/abs/2411.18824) - FaithDiff is a faithful image super-resolution method that leverages latent diffusion models by actively adapting the diffusion prior and jointly fine-tuning its components (encoder and diffusion model) with an alignment module to ensure high fidelity and structural consistency. | [FaithDiff Stable Diffusion XL Pipeline](#faithdiff-stable-diffusion-xl-pipeline) | [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/jychen9811/FaithDiff) | [Junyang Chen, Jinshan Pan, Jiangxin Dong, IMAG Lab, (Adapted by Eliseu Silva)](https://github.com/JyChen9811/FaithDiff) |
8989
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
9090

9191
```py
@@ -124,7 +124,6 @@ pipe = pipe.to("cuda")
124124
#--------Option--------#
125125
prompt = "A close-up of a beautiful woman's face with colored powder exploding around her, creating an abstract splash of vibrant hues, realistic style."
126126
stg_applied_layers_idx = [34]
127-
stg_mode = "STG"
128127
stg_scale = 1.0 # 0.0 for CFG
129128
#----------------------#
130129

@@ -5334,3 +5333,103 @@ output = pipeline_for_inversion(
53345333
pipeline.export_latents_to_video(output.inverse_latents[-1], "path/to/inverse_video.mp4", fps=8)
53355334
pipeline.export_latents_to_video(output.recon_latents[-1], "path/to/recon_video.mp4", fps=8)
53365335
```
5336+
# FaithDiff Stable Diffusion XL Pipeline
5337+
5338+
[Project](https://jychen9811.github.io/FaithDiff_page/) / [GitHub](https://github.com/JyChen9811/FaithDiff/)
5339+
5340+
This the implementation of the FaithDiff pipeline for SDXL, adapted to use the HuggingFace Diffusers.
5341+
5342+
For more details see the project links above.
5343+
5344+
## Example Usage
5345+
5346+
This example upscale and restores a low-quality image. The input image has a resolution of 512x512 and will be upscaled at a scale of 2x, to a final resolution of 1024x1024. It is possible to upscale to a larger scale, but it is recommended that the input image be at least 1024x1024 in these cases. To upscale this image by 4x, for example, it would be recommended to re-input the result into a new 2x processing, thus performing progressive scaling.
5347+
5348+
````py
5349+
import random
5350+
import numpy as np
5351+
import torch
5352+
from diffusers import DiffusionPipeline, AutoencoderKL, UniPCMultistepScheduler
5353+
from huggingface_hub import hf_hub_download
5354+
from diffusers.utils import load_image
5355+
from PIL import Image
5356+
5357+
device = "cuda"
5358+
dtype = torch.float16
5359+
MAX_SEED = np.iinfo(np.int32).max
5360+
5361+
# Download weights for additional unet layers
5362+
model_file = hf_hub_download(
5363+
"jychen9811/FaithDiff",
5364+
filename="FaithDiff.bin", local_dir="./proc_data/faithdiff", local_dir_use_symlinks=False
5365+
)
5366+
5367+
# Initialize the models and pipeline
5368+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
5369+
5370+
model_id = "SG161222/RealVisXL_V4.0"
5371+
pipe = DiffusionPipeline.from_pretrained(
5372+
model_id,
5373+
torch_dtype=dtype,
5374+
vae=vae,
5375+
unet=None, #<- Do not load with original model.
5376+
custom_pipeline="pipeline_faithdiff_stable_diffusion_xl",
5377+
use_safetensors=True,
5378+
variant="fp16",
5379+
).to(device)
5380+
5381+
# Here we need use pipeline internal unet model
5382+
pipe.unet = pipe.unet_model.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)
5383+
5384+
# Load aditional layers to the model
5385+
pipe.unet.load_additional_layers(weight_path="proc_data/faithdiff/FaithDiff.bin", dtype=dtype)
5386+
5387+
# Enable vae tiling
5388+
pipe.set_encoder_tile_settings()
5389+
pipe.enable_vae_tiling()
5390+
5391+
# Optimization
5392+
pipe.enable_model_cpu_offload()
5393+
5394+
# Set selected scheduler
5395+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
5396+
5397+
#input params
5398+
prompt = "The image features a woman in her 55s with blonde hair and a white shirt, smiling at the camera. She appears to be in a good mood and is wearing a white scarf around her neck. "
5399+
upscale = 2 # scale here
5400+
start_point = "lr" # or "noise"
5401+
latent_tiled_overlap = 0.5
5402+
latent_tiled_size = 1024
5403+
5404+
# Load image
5405+
lq_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/woman.png")
5406+
original_height = lq_image.height
5407+
original_width = lq_image.width
5408+
print(f"Current resolution: H:{original_height} x W:{original_width}")
5409+
5410+
width = original_width * int(upscale)
5411+
height = original_height * int(upscale)
5412+
print(f"Final resolution: H:{height} x W:{width}")
5413+
5414+
# Restoration
5415+
image = lq_image.resize((width, height), Image.LANCZOS)
5416+
input_image, width_init, height_init, width_now, height_now = pipe.check_image_size(image)
5417+
5418+
generator = torch.Generator(device=device).manual_seed(random.randint(0, MAX_SEED))
5419+
gen_image = pipe(lr_img=input_image,
5420+
prompt = prompt,
5421+
num_inference_steps=20,
5422+
guidance_scale=5,
5423+
generator=generator,
5424+
start_point=start_point,
5425+
height = height_now,
5426+
width=width_now,
5427+
overlap=latent_tiled_overlap,
5428+
target_size=(latent_tiled_size, latent_tiled_size)
5429+
).images[0]
5430+
5431+
cropped_image = gen_image.crop((0, 0, width_init, height_init))
5432+
cropped_image.save("data/result.png")
5433+
````
5434+
### Result
5435+
[<img src="https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/faithdiff_restored.PNG" width="512px" height="512px"/>](https://imgsli.com/MzY1NzE2)

0 commit comments

Comments
 (0)