|
78 | 78 | "xnli_processors",
|
79 | 79 | "xnli_tasks_num_labels",
|
80 | 80 | ],
|
| 81 | + "feature_extraction_sequence_utils": ["BatchFeature", "SequenceFeatureExtractor"], |
81 | 82 | "file_utils": [
|
82 | 83 | "CONFIG_NAME",
|
83 | 84 | "MODEL_CARD_NAME",
|
|
124 | 125 | "load_tf2_model_in_pytorch_model",
|
125 | 126 | "load_tf2_weights_in_pytorch_model",
|
126 | 127 | ],
|
127 |
| - "models": [], |
128 | 128 | # Models
|
129 |
| - "models.wav2vec2": [ |
130 |
| - "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", |
131 |
| - "Wav2Vec2Config", |
132 |
| - "Wav2Vec2CTCTokenizer", |
133 |
| - "Wav2Vec2Tokenizer", |
134 |
| - "Wav2Vec2FeatureExtractor", |
135 |
| - "Wav2Vec2Processor", |
136 |
| - ], |
137 |
| - "models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"], |
138 |
| - "models.speech_to_text": [ |
139 |
| - "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", |
140 |
| - "Speech2TextConfig", |
141 |
| - "Speech2TextFeatureExtractor", |
142 |
| - ], |
143 |
| - "models.convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertTokenizer"], |
| 129 | + "models": [], |
144 | 130 | "models.albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig"],
|
145 | 131 | "models.auto": [
|
146 | 132 | "ALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
169 | 155 | "BlenderbotSmallTokenizer",
|
170 | 156 | ],
|
171 | 157 | "models.camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig"],
|
| 158 | + "models.convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertTokenizer"], |
172 | 159 | "models.ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig", "CTRLTokenizer"],
|
173 | 160 | "models.deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaTokenizer"],
|
174 | 161 | "models.deberta_v2": ["DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaV2Config"],
|
|
193 | 180 | "models.led": ["LED_PRETRAINED_CONFIG_ARCHIVE_MAP", "LEDConfig", "LEDTokenizer"],
|
194 | 181 | "models.longformer": ["LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerTokenizer"],
|
195 | 182 | "models.lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig", "LxmertTokenizer"],
|
| 183 | + "models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"], |
196 | 184 | "models.marian": ["MarianConfig"],
|
197 | 185 | "models.mbart": ["MBartConfig"],
|
198 | 186 | "models.mmbt": ["MMBTConfig"],
|
|
207 | 195 | "models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"],
|
208 | 196 | "models.retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig", "RetriBertTokenizer"],
|
209 | 197 | "models.roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaTokenizer"],
|
| 198 | + "models.speech_to_text": [ |
| 199 | + "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", |
| 200 | + "Speech2TextConfig", |
| 201 | + "Speech2TextFeatureExtractor", |
| 202 | + ], |
210 | 203 | "models.squeezebert": ["SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertTokenizer"],
|
211 | 204 | "models.t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config"],
|
212 | 205 | "models.tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig", "TapasTokenizer"],
|
|
216 | 209 | "TransfoXLCorpus",
|
217 | 210 | "TransfoXLTokenizer",
|
218 | 211 | ],
|
| 212 | + "models.wav2vec2": [ |
| 213 | + "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", |
| 214 | + "Wav2Vec2Config", |
| 215 | + "Wav2Vec2CTCTokenizer", |
| 216 | + "Wav2Vec2FeatureExtractor", |
| 217 | + "Wav2Vec2Processor", |
| 218 | + "Wav2Vec2Tokenizer", |
| 219 | + ], |
219 | 220 | "models.xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMTokenizer"],
|
220 | 221 | "models.xlm_prophetnet": ["XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMProphetNetConfig"],
|
221 | 222 | "models.xlm_roberta": ["XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig"],
|
|
251 | 252 | "SpecialTokensMixin",
|
252 | 253 | "TokenSpan",
|
253 | 254 | ],
|
254 |
| - "feature_extraction_sequence_utils": ["SequenceFeatureExtractor", "BatchFeature"], |
255 | 255 | "trainer_callback": [
|
256 | 256 | "DefaultFlowCallback",
|
257 | 257 | "EarlyStoppingCallback",
|
|
383 | 383 | "TopPLogitsWarper",
|
384 | 384 | ]
|
385 | 385 | _import_structure["generation_stopping_criteria"] = [
|
386 |
| - "StoppingCriteria", |
387 |
| - "StoppingCriteriaList", |
388 | 386 | "MaxLengthCriteria",
|
389 | 387 | "MaxTimeCriteria",
|
| 388 | + "StoppingCriteria", |
| 389 | + "StoppingCriteriaList", |
390 | 390 | ]
|
391 | 391 | _import_structure["generation_utils"] = ["top_k_top_p_filtering"]
|
392 | 392 | _import_structure["modeling_utils"] = ["Conv1D", "PreTrainedModel", "apply_chunking_to_forward", "prune_layer"]
|
393 | 393 | # PyTorch models structure
|
394 |
| - |
395 |
| - _import_structure["models.speech_to_text"].extend( |
396 |
| - [ |
397 |
| - "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", |
398 |
| - "Speech2TextForConditionalGeneration", |
399 |
| - "Speech2TextModel", |
400 |
| - ] |
401 |
| - ) |
402 |
| - |
403 |
| - _import_structure["models.wav2vec2"].extend( |
404 |
| - [ |
405 |
| - "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", |
406 |
| - "Wav2Vec2ForCTC", |
407 |
| - "Wav2Vec2ForMaskedLM", |
408 |
| - "Wav2Vec2Model", |
409 |
| - "Wav2Vec2PreTrainedModel", |
410 |
| - ] |
411 |
| - ) |
412 |
| - _import_structure["models.m2m_100"].extend( |
413 |
| - [ |
414 |
| - "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", |
415 |
| - "M2M100ForConditionalGeneration", |
416 |
| - "M2M100Model", |
417 |
| - ] |
418 |
| - ) |
419 |
| - |
420 |
| - _import_structure["models.convbert"].extend( |
421 |
| - [ |
422 |
| - "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", |
423 |
| - "ConvBertForMaskedLM", |
424 |
| - "ConvBertForMultipleChoice", |
425 |
| - "ConvBertForQuestionAnswering", |
426 |
| - "ConvBertForSequenceClassification", |
427 |
| - "ConvBertForTokenClassification", |
428 |
| - "ConvBertLayer", |
429 |
| - "ConvBertModel", |
430 |
| - "ConvBertPreTrainedModel", |
431 |
| - "load_tf_weights_in_convbert", |
432 |
| - ] |
433 |
| - ) |
434 | 394 | _import_structure["models.albert"].extend(
|
435 | 395 | [
|
436 | 396 | "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
512 | 472 | _import_structure["models.blenderbot"].extend(
|
513 | 473 | [
|
514 | 474 | "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
| 475 | + "BlenderbotForCausalLM", |
515 | 476 | "BlenderbotForConditionalGeneration",
|
516 | 477 | "BlenderbotModel",
|
517 |
| - "BlenderbotForCausalLM", |
518 | 478 | ]
|
519 | 479 | )
|
520 | 480 | _import_structure["models.blenderbot_small"].extend(
|
521 | 481 | [
|
522 | 482 | "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
| 483 | + "BlenderbotSmallForCausalLM", |
523 | 484 | "BlenderbotSmallForConditionalGeneration",
|
524 | 485 | "BlenderbotSmallModel",
|
525 |
| - "BlenderbotSmallForCausalLM", |
526 | 486 | ]
|
527 | 487 | )
|
528 | 488 | _import_structure["models.camembert"].extend(
|
|
537 | 497 | "CamembertModel",
|
538 | 498 | ]
|
539 | 499 | )
|
| 500 | + _import_structure["models.convbert"].extend( |
| 501 | + [ |
| 502 | + "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", |
| 503 | + "ConvBertForMaskedLM", |
| 504 | + "ConvBertForMultipleChoice", |
| 505 | + "ConvBertForQuestionAnswering", |
| 506 | + "ConvBertForSequenceClassification", |
| 507 | + "ConvBertForTokenClassification", |
| 508 | + "ConvBertLayer", |
| 509 | + "ConvBertModel", |
| 510 | + "ConvBertPreTrainedModel", |
| 511 | + "load_tf_weights_in_convbert", |
| 512 | + ] |
| 513 | + ) |
540 | 514 | _import_structure["models.ctrl"].extend(
|
541 | 515 | [
|
542 | 516 | "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
549 | 523 | _import_structure["models.deberta"].extend(
|
550 | 524 | [
|
551 | 525 | "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
| 526 | + "DebertaForMaskedLM", |
| 527 | + "DebertaForQuestionAnswering", |
552 | 528 | "DebertaForSequenceClassification",
|
| 529 | + "DebertaForTokenClassification", |
553 | 530 | "DebertaModel",
|
554 |
| - "DebertaForMaskedLM", |
555 | 531 | "DebertaPreTrainedModel",
|
556 |
| - "DebertaForTokenClassification", |
557 |
| - "DebertaForQuestionAnswering", |
558 | 532 | ]
|
559 | 533 | )
|
560 | 534 | _import_structure["models.deberta_v2"].extend(
|
561 | 535 | [
|
562 | 536 | "DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
| 537 | + "DebertaV2ForMaskedLM", |
| 538 | + "DebertaV2ForQuestionAnswering", |
563 | 539 | "DebertaV2ForSequenceClassification",
|
| 540 | + "DebertaV2ForTokenClassification", |
564 | 541 | "DebertaV2Model",
|
565 |
| - "DebertaV2ForMaskedLM", |
566 | 542 | "DebertaV2PreTrainedModel",
|
567 |
| - "DebertaV2ForTokenClassification", |
568 |
| - "DebertaV2ForQuestionAnswering", |
569 | 543 | ]
|
570 | 544 | )
|
571 | 545 | _import_structure["models.distilbert"].extend(
|
|
699 | 673 | "LxmertXLayer",
|
700 | 674 | ]
|
701 | 675 | )
|
702 |
| - _import_structure["models.marian"].extend(["MarianModel", "MarianMTModel", "MarianForCausalLM"]) |
| 676 | + _import_structure["models.m2m_100"].extend( |
| 677 | + [ |
| 678 | + "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", |
| 679 | + "M2M100ForConditionalGeneration", |
| 680 | + "M2M100Model", |
| 681 | + ] |
| 682 | + ) |
| 683 | + _import_structure["models.marian"].extend(["MarianForCausalLM", "MarianModel", "MarianMTModel"]) |
703 | 684 | _import_structure["models.mbart"].extend(
|
704 | 685 | [
|
705 | 686 | "MBartForCausalLM",
|
|
752 | 733 | ]
|
753 | 734 | )
|
754 | 735 | _import_structure["models.pegasus"].extend(
|
755 |
| - ["PegasusForConditionalGeneration", "PegasusModel", "PegasusForCausalLM"] |
| 736 | + ["PegasusForCausalLM", "PegasusForConditionalGeneration", "PegasusModel"] |
756 | 737 | )
|
757 | 738 | _import_structure["models.prophetnet"].extend(
|
758 | 739 | [
|
|
793 | 774 | "RobertaModel",
|
794 | 775 | ]
|
795 | 776 | )
|
| 777 | + _import_structure["models.speech_to_text"].extend( |
| 778 | + [ |
| 779 | + "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", |
| 780 | + "Speech2TextForConditionalGeneration", |
| 781 | + "Speech2TextModel", |
| 782 | + ] |
| 783 | + ) |
796 | 784 | _import_structure["models.squeezebert"].extend(
|
797 | 785 | [
|
798 | 786 | "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
836 | 824 | "load_tf_weights_in_transfo_xl",
|
837 | 825 | ]
|
838 | 826 | )
|
| 827 | + _import_structure["models.wav2vec2"].extend( |
| 828 | + [ |
| 829 | + "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", |
| 830 | + "Wav2Vec2ForCTC", |
| 831 | + "Wav2Vec2ForMaskedLM", |
| 832 | + "Wav2Vec2Model", |
| 833 | + "Wav2Vec2PreTrainedModel", |
| 834 | + ] |
| 835 | + ) |
839 | 836 | _import_structure["models.xlm"].extend(
|
840 | 837 | [
|
841 | 838 | "XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
916 | 913 | "shape_list",
|
917 | 914 | ]
|
918 | 915 | # TensorFlow models structure
|
919 |
| - |
920 |
| - _import_structure["models.convbert"].extend( |
921 |
| - [ |
922 |
| - "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", |
923 |
| - "TFConvBertForMaskedLM", |
924 |
| - "TFConvBertForMultipleChoice", |
925 |
| - "TFConvBertForQuestionAnswering", |
926 |
| - "TFConvBertForSequenceClassification", |
927 |
| - "TFConvBertForTokenClassification", |
928 |
| - "TFConvBertLayer", |
929 |
| - "TFConvBertModel", |
930 |
| - "TFConvBertPreTrainedModel", |
931 |
| - ] |
932 |
| - ) |
933 | 916 | _import_structure["models.albert"].extend(
|
934 | 917 | [
|
935 | 918 | "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
1002 | 985 | "TFCamembertModel",
|
1003 | 986 | ]
|
1004 | 987 | )
|
| 988 | + _import_structure["models.convbert"].extend( |
| 989 | + [ |
| 990 | + "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", |
| 991 | + "TFConvBertForMaskedLM", |
| 992 | + "TFConvBertForMultipleChoice", |
| 993 | + "TFConvBertForQuestionAnswering", |
| 994 | + "TFConvBertForSequenceClassification", |
| 995 | + "TFConvBertForTokenClassification", |
| 996 | + "TFConvBertLayer", |
| 997 | + "TFConvBertModel", |
| 998 | + "TFConvBertPreTrainedModel", |
| 999 | + ] |
| 1000 | + ) |
1005 | 1001 | _import_structure["models.ctrl"].extend(
|
1006 | 1002 | [
|
1007 | 1003 | "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
1108 | 1104 | "TFLxmertVisualFeatureEncoder",
|
1109 | 1105 | ]
|
1110 | 1106 | )
|
1111 |
| - _import_structure["models.marian"].extend(["TFMarianMTModel", "TFMarianModel"]) |
| 1107 | + _import_structure["models.marian"].extend(["TFMarianModel", "TFMarianMTModel"]) |
1112 | 1108 | _import_structure["models.mbart"].extend(["TFMBartForConditionalGeneration", "TFMBartModel"])
|
1113 | 1109 | _import_structure["models.mobilebert"].extend(
|
1114 | 1110 | [
|
|
2170 | 2166 | TFLxmertPreTrainedModel,
|
2171 | 2167 | TFLxmertVisualFeatureEncoder,
|
2172 | 2168 | )
|
2173 |
| - from .models.marian import TFMarian, TFMarianMTModel |
| 2169 | + from .models.marian import TFMarianModel, TFMarianMTModel |
2174 | 2170 | from .models.mbart import TFMBartForConditionalGeneration, TFMBartModel
|
2175 | 2171 | from .models.mobilebert import (
|
2176 | 2172 | TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
0 commit comments