forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsync.rs
1414 lines (1322 loc) · 48.1 KB
/
sync.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[allow(missing_doc)];
/**
* The concurrency primitives you know and love.
*
* Maybe once we have a "core exports x only to std" mechanism, these can be
* in std.
*/
use std::comm;
use std::unstable::sync::Exclusive;
use std::sync::arc::UnsafeArc;
use std::sync::atomics;
use std::util;
use std::util::NonCopyable;
use arc::MutexArc;
#[cfg(stage0)] // SNAP b6400f9
macro_rules! finally {
($e: expr) => {
// this `let` has to be free-standing, so that it's directly
// in the scope of the callee of `finally!`, to get the dtor to
// run at the right time.
let _guard = ::std::finally::FinallyGuard::new(|| $e);
}
}
/****************************************************************************
* Internals
****************************************************************************/
// Each waiting task receives on one of these.
#[doc(hidden)]
type WaitEnd = Port<()>;
#[doc(hidden)]
type SignalEnd = Chan<()>;
// A doubly-ended queue of waiting tasks.
#[doc(hidden)]
struct WaitQueue { head: Port<SignalEnd>,
tail: Chan<SignalEnd> }
impl WaitQueue {
fn new() -> WaitQueue {
let (block_head, block_tail) = Chan::new();
WaitQueue { head: block_head, tail: block_tail }
}
// Signals one live task from the queue.
fn signal(&self) -> bool {
match self.head.try_recv() {
comm::Data(ch) => {
// Send a wakeup signal. If the waiter was killed, its port will
// have closed. Keep trying until we get a live task.
if ch.try_send_deferred(()) {
true
} else {
self.signal()
}
}
_ => false
}
}
fn broadcast(&self) -> uint {
let mut count = 0;
loop {
match self.head.try_recv() {
comm::Data(ch) => {
if ch.try_send_deferred(()) {
count += 1;
}
}
_ => break
}
}
count
}
fn wait_end(&self) -> WaitEnd {
let (wait_end, signal_end) = Chan::new();
assert!(self.tail.try_send_deferred(signal_end));
wait_end
}
}
// The building-block used to make semaphores, mutexes, and rwlocks.
#[doc(hidden)]
struct SemInner<Q> {
count: int,
waiters: WaitQueue,
// Can be either unit or another waitqueue. Some sems shouldn't come with
// a condition variable attached, others should.
blocked: Q
}
#[doc(hidden)]
struct Sem<Q>(Exclusive<SemInner<Q>>);
#[doc(hidden)]
impl<Q:Send> Sem<Q> {
fn new(count: int, q: Q) -> Sem<Q> {
Sem(Exclusive::new(SemInner {
count: count, waiters: WaitQueue::new(), blocked: q }))
}
pub fn acquire(&self) {
unsafe {
let mut waiter_nobe = None;
let Sem(ref lock) = *self;
lock.with(|state| {
state.count -= 1;
if state.count < 0 {
// Create waiter nobe, enqueue ourself, and tell
// outer scope we need to block.
waiter_nobe = Some(state.waiters.wait_end());
}
});
// Uncomment if you wish to test for sem races. Not valgrind-friendly.
/* for _ in range(0, 1000) { task::deschedule(); } */
// Need to wait outside the exclusive.
if waiter_nobe.is_some() {
let _ = waiter_nobe.unwrap().recv();
}
}
}
pub fn release(&self) {
unsafe {
let Sem(ref lock) = *self;
lock.with(|state| {
state.count += 1;
if state.count <= 0 {
state.waiters.signal();
}
})
}
}
pub fn access<U>(&self, blk: || -> U) -> U {
self.acquire();
finally!(self.release());
blk()
}
}
#[doc(hidden)]
impl Sem<~[WaitQueue]> {
fn new_and_signal(count: int, num_condvars: uint)
-> Sem<~[WaitQueue]> {
let mut queues = ~[];
for _ in range(0, num_condvars) { queues.push(WaitQueue::new()); }
Sem::new(count, queues)
}
}
// FIXME(#3598): Want to use an Option down below, but we need a custom enum
// that's not polymorphic to get around the fact that lifetimes are invariant
// inside of type parameters.
enum ReacquireOrderLock<'a> {
Nothing, // c.c
Just(&'a Semaphore),
}
/// A mechanism for atomic-unlock-and-deschedule blocking and signalling.
pub struct Condvar<'a> {
// The 'Sem' object associated with this condvar. This is the one that's
// atomically-unlocked-and-descheduled upon and reacquired during wakeup.
priv sem: &'a Sem<~[WaitQueue]>,
// This is (can be) an extra semaphore which is held around the reacquire
// operation on the first one. This is only used in cvars associated with
// rwlocks, and is needed to ensure that, when a downgrader is trying to
// hand off the access lock (which would be the first field, here), a 2nd
// writer waking up from a cvar wait can't race with a reader to steal it,
// See the comment in write_cond for more detail.
priv order: ReacquireOrderLock<'a>,
// Make sure condvars are non-copyable.
priv token: util::NonCopyable,
}
impl<'a> Condvar<'a> {
/**
* Atomically drop the associated lock, and block until a signal is sent.
*
* # Failure
* A task which is killed (i.e., by linked failure with another task)
* while waiting on a condition variable will wake up, fail, and unlock
* the associated lock as it unwinds.
*/
pub fn wait(&self) { self.wait_on(0) }
/**
* As wait(), but can specify which of multiple condition variables to
* wait on. Only a signal_on() or broadcast_on() with the same condvar_id
* will wake this thread.
*
* The associated lock must have been initialised with an appropriate
* number of condvars. The condvar_id must be between 0 and num_condvars-1
* or else this call will fail.
*
* wait() is equivalent to wait_on(0).
*/
pub fn wait_on(&self, condvar_id: uint) {
let mut WaitEnd = None;
let mut out_of_bounds = None;
// Release lock, 'atomically' enqueuing ourselves in so doing.
unsafe {
let Sem(ref queue) = *self.sem;
queue.with(|state| {
if condvar_id < state.blocked.len() {
// Drop the lock.
state.count += 1;
if state.count <= 0 {
state.waiters.signal();
}
// Create waiter nobe, and enqueue ourself to
// be woken up by a signaller.
WaitEnd = Some(state.blocked[condvar_id].wait_end());
} else {
out_of_bounds = Some(state.blocked.len());
}
})
}
// If deschedule checks start getting inserted anywhere, we can be
// killed before or after enqueueing.
check_cvar_bounds(out_of_bounds, condvar_id, "cond.wait_on()", || {
// Unconditionally "block". (Might not actually block if a
// signaller already sent -- I mean 'unconditionally' in contrast
// with acquire().)
finally!(
// Reacquire the condvar.
match self.order {
Just(lock) => lock.access(|| self.sem.acquire()),
Nothing => self.sem.acquire(),
});
let _ = WaitEnd.take_unwrap().recv();
})
}
/// Wake up a blocked task. Returns false if there was no blocked task.
pub fn signal(&self) -> bool { self.signal_on(0) }
/// As signal, but with a specified condvar_id. See wait_on.
pub fn signal_on(&self, condvar_id: uint) -> bool {
unsafe {
let mut out_of_bounds = None;
let mut result = false;
let Sem(ref lock) = *self.sem;
lock.with(|state| {
if condvar_id < state.blocked.len() {
result = state.blocked[condvar_id].signal();
} else {
out_of_bounds = Some(state.blocked.len());
}
});
check_cvar_bounds(out_of_bounds,
condvar_id,
"cond.signal_on()",
|| result)
}
}
/// Wake up all blocked tasks. Returns the number of tasks woken.
pub fn broadcast(&self) -> uint { self.broadcast_on(0) }
/// As broadcast, but with a specified condvar_id. See wait_on.
pub fn broadcast_on(&self, condvar_id: uint) -> uint {
let mut out_of_bounds = None;
let mut queue = None;
unsafe {
let Sem(ref lock) = *self.sem;
lock.with(|state| {
if condvar_id < state.blocked.len() {
// To avoid :broadcast_heavy, we make a new waitqueue,
// swap it out with the old one, and broadcast on the
// old one outside of the little-lock.
queue = Some(util::replace(&mut state.blocked[condvar_id],
WaitQueue::new()));
} else {
out_of_bounds = Some(state.blocked.len());
}
});
check_cvar_bounds(out_of_bounds,
condvar_id,
"cond.signal_on()",
|| {
queue.take_unwrap().broadcast()
})
}
}
}
// Checks whether a condvar ID was out of bounds, and fails if so, or does
// something else next on success.
#[inline]
#[doc(hidden)]
fn check_cvar_bounds<U>(
out_of_bounds: Option<uint>,
id: uint,
act: &str,
blk: || -> U)
-> U {
match out_of_bounds {
Some(0) =>
fail!("{} with illegal ID {} - this lock has no condvars!", act, id),
Some(length) =>
fail!("{} with illegal ID {} - ID must be less than {}", act, id, length),
None => blk()
}
}
#[doc(hidden)]
impl Sem<~[WaitQueue]> {
// The only other places that condvars get built are rwlock.write_cond()
// and rwlock_write_mode.
pub fn access_cond<U>(&self, blk: |c: &Condvar| -> U) -> U {
self.access(|| {
blk(&Condvar {
sem: self,
order: Nothing,
token: NonCopyable
})
})
}
}
/****************************************************************************
* Semaphores
****************************************************************************/
/// A counting, blocking, bounded-waiting semaphore.
pub struct Semaphore { priv sem: Sem<()> }
impl Clone for Semaphore {
/// Create a new handle to the semaphore.
fn clone(&self) -> Semaphore {
let Sem(ref lock) = self.sem;
Semaphore { sem: Sem(lock.clone()) }
}
}
impl Semaphore {
/// Create a new semaphore with the specified count.
pub fn new(count: int) -> Semaphore {
Semaphore { sem: Sem::new(count, ()) }
}
/**
* Acquire a resource represented by the semaphore. Blocks if necessary
* until resource(s) become available.
*/
pub fn acquire(&self) { (&self.sem).acquire() }
/**
* Release a held resource represented by the semaphore. Wakes a blocked
* contending task, if any exist. Won't block the caller.
*/
pub fn release(&self) { (&self.sem).release() }
/// Run a function with ownership of one of the semaphore's resources.
pub fn access<U>(&self, blk: || -> U) -> U { (&self.sem).access(blk) }
}
/****************************************************************************
* Mutexes
****************************************************************************/
/**
* A blocking, bounded-waiting, mutual exclusion lock with an associated
* FIFO condition variable.
*
* # Failure
* A task which fails while holding a mutex will unlock the mutex as it
* unwinds.
*/
pub struct Mutex { priv sem: Sem<~[WaitQueue]> }
impl Clone for Mutex {
/// Create a new handle to the mutex.
fn clone(&self) -> Mutex {
let Sem(ref queue) = self.sem;
Mutex { sem: Sem(queue.clone()) } }
}
impl Mutex {
/// Create a new mutex, with one associated condvar.
pub fn new() -> Mutex { Mutex::new_with_condvars(1) }
/**
* Create a new mutex, with a specified number of associated condvars. This
* will allow calling wait_on/signal_on/broadcast_on with condvar IDs between
* 0 and num_condvars-1. (If num_condvars is 0, lock_cond will be allowed but
* any operations on the condvar will fail.)
*/
pub fn new_with_condvars(num_condvars: uint) -> Mutex {
Mutex { sem: Sem::new_and_signal(1, num_condvars) }
}
/// Run a function with ownership of the mutex.
pub fn lock<U>(&self, blk: || -> U) -> U {
(&self.sem).access(blk)
}
/// Run a function with ownership of the mutex and a handle to a condvar.
pub fn lock_cond<U>(&self, blk: |c: &Condvar| -> U) -> U {
(&self.sem).access_cond(blk)
}
}
/****************************************************************************
* Reader-writer locks
****************************************************************************/
// NB: Wikipedia - Readers-writers_problem#The_third_readers-writers_problem
#[doc(hidden)]
struct RWLockInner {
// You might ask, "Why don't you need to use an atomic for the mode flag?"
// This flag affects the behaviour of readers (for plain readers, they
// assert on it; for downgraders, they use it to decide which mode to
// unlock for). Consider that the flag is only unset when the very last
// reader exits; therefore, it can never be unset during a reader/reader
// (or reader/downgrader) race.
// By the way, if we didn't care about the assert in the read unlock path,
// we could instead store the mode flag in write_downgrade's stack frame,
// and have the downgrade tokens store a reference to it.
read_mode: bool,
// The only way the count flag is ever accessed is with xadd. Since it is
// a read-modify-write operation, multiple xadds on different cores will
// always be consistent with respect to each other, so a monotonic/relaxed
// consistency ordering suffices (i.e., no extra barriers are needed).
// FIXME(#6598): The atomics module has no relaxed ordering flag, so I use
// acquire/release orderings superfluously. Change these someday.
read_count: atomics::AtomicUint,
}
/**
* A blocking, no-starvation, reader-writer lock with an associated condvar.
*
* # Failure
* A task which fails while holding an rwlock will unlock the rwlock as it
* unwinds.
*/
pub struct RWLock {
priv order_lock: Semaphore,
priv access_lock: Sem<~[WaitQueue]>,
priv state: UnsafeArc<RWLockInner>,
}
impl RWLock {
/// Create a new rwlock, with one associated condvar.
pub fn new() -> RWLock { RWLock::new_with_condvars(1) }
/**
* Create a new rwlock, with a specified number of associated condvars.
* Similar to mutex_with_condvars.
*/
pub fn new_with_condvars(num_condvars: uint) -> RWLock {
let state = UnsafeArc::new(RWLockInner {
read_mode: false,
read_count: atomics::AtomicUint::new(0),
});
RWLock { order_lock: Semaphore::new(1),
access_lock: Sem::new_and_signal(1, num_condvars),
state: state, }
}
/// Create a new handle to the rwlock.
pub fn clone(&self) -> RWLock {
let Sem(ref access_lock_queue) = self.access_lock;
RWLock { order_lock: (&(self.order_lock)).clone(),
access_lock: Sem(access_lock_queue.clone()),
state: self.state.clone() }
}
/**
* Run a function with the rwlock in read mode. Calls to 'read' from other
* tasks may run concurrently with this one.
*/
pub fn read<U>(&self, blk: || -> U) -> U {
unsafe {
(&self.order_lock).access(|| {
let state = &mut *self.state.get();
let old_count = state.read_count.fetch_add(1, atomics::Acquire);
if old_count == 0 {
(&self.access_lock).acquire();
state.read_mode = true;
}
});
finally!({
let state = &mut *self.state.get();
assert!(state.read_mode);
let old_count = state.read_count.fetch_sub(1, atomics::Release);
assert!(old_count > 0);
if old_count == 1 {
state.read_mode = false;
// Note: this release used to be outside of a locked access
// to exclusive-protected state. If this code is ever
// converted back to such (instead of using atomic ops),
// this access MUST NOT go inside the exclusive access.
(&self.access_lock).release();
}
});
blk()
}
}
/**
* Run a function with the rwlock in write mode. No calls to 'read' or
* 'write' from other tasks will run concurrently with this one.
*/
pub fn write<U>(&self, blk: || -> U) -> U {
(&self.order_lock).acquire();
(&self.access_lock).access(|| {
(&self.order_lock).release();
blk()
})
}
/**
* As write(), but also with a handle to a condvar. Waiting on this
* condvar will allow readers and writers alike to take the rwlock before
* the waiting task is signalled. (Note: a writer that waited and then
* was signalled might reacquire the lock before other waiting writers.)
*/
pub fn write_cond<U>(&self, blk: |c: &Condvar| -> U) -> U {
// It's important to thread our order lock into the condvar, so that
// when a cond.wait() wakes up, it uses it while reacquiring the
// access lock. If we permitted a waking-up writer to "cut in line",
// there could arise a subtle race when a downgrader attempts to hand
// off the reader cloud lock to a waiting reader. This race is tested
// in arc.rs (test_rw_write_cond_downgrade_read_race) and looks like:
// T1 (writer) T2 (downgrader) T3 (reader)
// [in cond.wait()]
// [locks for writing]
// [holds access_lock]
// [is signalled, perhaps by
// downgrader or a 4th thread]
// tries to lock access(!)
// lock order_lock
// xadd read_count[0->1]
// tries to lock access
// [downgrade]
// xadd read_count[1->2]
// unlock access
// Since T1 contended on the access lock before T3 did, it will steal
// the lock handoff. Adding order_lock in the condvar reacquire path
// solves this because T1 will hold order_lock while waiting on access,
// which will cause T3 to have to wait until T1 finishes its write,
// which can't happen until T2 finishes the downgrade-read entirely.
// The astute reader will also note that making waking writers use the
// order_lock is better for not starving readers.
(&self.order_lock).acquire();
(&self.access_lock).access_cond(|cond| {
(&self.order_lock).release();
let opt_lock = Just(&self.order_lock);
blk(&Condvar { sem: cond.sem, order: opt_lock,
token: NonCopyable })
})
}
/**
* As write(), but with the ability to atomically 'downgrade' the lock;
* i.e., to become a reader without letting other writers get the lock in
* the meantime (such as unlocking and then re-locking as a reader would
* do). The block takes a "write mode token" argument, which can be
* transformed into a "read mode token" by calling downgrade(). Example:
*
* # Example
*
* ```rust
* use extra::sync::RWLock;
*
* let lock = RWLock::new();
* lock.write_downgrade(|mut write_token| {
* write_token.write_cond(|condvar| {
* // ... exclusive access ...
* });
* let read_token = lock.downgrade(write_token);
* read_token.read(|| {
* // ... shared access ...
* })
* })
* ```
*/
pub fn write_downgrade<U>(&self, blk: |v: RWLockWriteMode| -> U) -> U {
// Implementation slightly different from the slicker 'write's above.
// The exit path is conditional on whether the caller downgrades.
(&self.order_lock).acquire();
(&self.access_lock).acquire();
(&self.order_lock).release();
finally!({
let writer_or_last_reader;
// Check if we're releasing from read mode or from write mode.
let state = unsafe { &mut *self.state.get() };
if state.read_mode {
// Releasing from read mode.
let old_count = state.read_count.fetch_sub(1, atomics::Release);
assert!(old_count > 0);
// Check if other readers remain.
if old_count == 1 {
// Case 1: Writer downgraded & was the last reader
writer_or_last_reader = true;
state.read_mode = false;
} else {
// Case 2: Writer downgraded & was not the last reader
writer_or_last_reader = false;
}
} else {
// Case 3: Writer did not downgrade
writer_or_last_reader = true;
}
if writer_or_last_reader {
// Nobody left inside; release the "reader cloud" lock.
(&self.access_lock).release();
}
});
blk(RWLockWriteMode { lock: self, token: NonCopyable })
}
/// To be called inside of the write_downgrade block.
pub fn downgrade<'a>(&self, token: RWLockWriteMode<'a>)
-> RWLockReadMode<'a> {
if !((self as *RWLock) == (token.lock as *RWLock)) {
fail!("Can't downgrade() with a different rwlock's write_mode!");
}
unsafe {
let state = &mut *self.state.get();
assert!(!state.read_mode);
state.read_mode = true;
// If a reader attempts to enter at this point, both the
// downgrader and reader will set the mode flag. This is fine.
let old_count = state.read_count.fetch_add(1, atomics::Release);
// If another reader was already blocking, we need to hand-off
// the "reader cloud" access lock to them.
if old_count != 0 {
// Guaranteed not to let another writer in, because
// another reader was holding the order_lock. Hence they
// must be the one to get the access_lock (because all
// access_locks are acquired with order_lock held). See
// the comment in write_cond for more justification.
(&self.access_lock).release();
}
}
RWLockReadMode { lock: token.lock, token: NonCopyable }
}
}
/// The "write permission" token used for rwlock.write_downgrade().
pub struct RWLockWriteMode<'a> { priv lock: &'a RWLock, priv token: NonCopyable }
/// The "read permission" token used for rwlock.write_downgrade().
pub struct RWLockReadMode<'a> { priv lock: &'a RWLock,
priv token: NonCopyable }
impl<'a> RWLockWriteMode<'a> {
/// Access the pre-downgrade rwlock in write mode.
pub fn write<U>(&self, blk: || -> U) -> U { blk() }
/// Access the pre-downgrade rwlock in write mode with a condvar.
pub fn write_cond<U>(&self, blk: |c: &Condvar| -> U) -> U {
// Need to make the condvar use the order lock when reacquiring the
// access lock. See comment in RWLock::write_cond for why.
blk(&Condvar { sem: &self.lock.access_lock,
order: Just(&self.lock.order_lock),
token: NonCopyable })
}
}
impl<'a> RWLockReadMode<'a> {
/// Access the post-downgrade rwlock in read mode.
pub fn read<U>(&self, blk: || -> U) -> U { blk() }
}
/// A barrier enables multiple tasks to synchronize the beginning
/// of some computation.
///
/// ```rust
/// use extra::sync::Barrier;
///
/// let barrier = Barrier::new(10);
/// for _ in range(0, 10) {
/// let c = barrier.clone();
/// // The same messages will be printed together.
/// // You will NOT see any interleaving.
/// spawn(proc() {
/// println!("before wait");
/// c.wait();
/// println!("after wait");
/// });
/// }
/// ```
#[deriving(Clone)]
pub struct Barrier {
priv arc: MutexArc<BarrierState>,
priv num_tasks: uint,
}
// The inner state of a double barrier
struct BarrierState {
count: uint,
generation_id: uint,
}
impl Barrier {
/// Create a new barrier that can block a given number of tasks.
pub fn new(num_tasks: uint) -> Barrier {
Barrier {
arc: MutexArc::new(BarrierState {
count: 0,
generation_id: 0,
}),
num_tasks: num_tasks,
}
}
/// Block the current task until a certain number of tasks is waiting.
pub fn wait(&self) {
self.arc.access_cond(|state, cond| {
let local_gen = state.generation_id;
state.count += 1;
if state.count < self.num_tasks {
// We need a while loop to guard against spurious wakeups.
// http://en.wikipedia.org/wiki/Spurious_wakeup
while local_gen == state.generation_id && state.count < self.num_tasks {
cond.wait();
}
} else {
state.count = 0;
state.generation_id += 1;
cond.broadcast();
}
});
}
}
/****************************************************************************
* Tests
****************************************************************************/
#[cfg(test)]
mod tests {
use sync::*;
use std::cast;
use std::result;
use std::task;
use std::comm::{SharedChan, Empty};
/************************************************************************
* Semaphore tests
************************************************************************/
#[test]
fn test_sem_acquire_release() {
let s = Semaphore::new(1);
s.acquire();
s.release();
s.acquire();
}
#[test]
fn test_sem_basic() {
let s = Semaphore::new(1);
s.access(|| { })
}
#[test]
fn test_sem_as_mutex() {
let s = Semaphore::new(1);
let s2 = s.clone();
task::spawn(proc() {
s2.access(|| {
for _ in range(0, 5) { task::deschedule(); }
})
});
s.access(|| {
for _ in range(0, 5) { task::deschedule(); }
})
}
#[test]
fn test_sem_as_cvar() {
/* Child waits and parent signals */
let (p, c) = Chan::new();
let s = Semaphore::new(0);
let s2 = s.clone();
task::spawn(proc() {
s2.acquire();
c.send(());
});
for _ in range(0, 5) { task::deschedule(); }
s.release();
let _ = p.recv();
/* Parent waits and child signals */
let (p, c) = Chan::new();
let s = Semaphore::new(0);
let s2 = s.clone();
task::spawn(proc() {
for _ in range(0, 5) { task::deschedule(); }
s2.release();
let _ = p.recv();
});
s.acquire();
c.send(());
}
#[test]
fn test_sem_multi_resource() {
// Parent and child both get in the critical section at the same
// time, and shake hands.
let s = Semaphore::new(2);
let s2 = s.clone();
let (p1,c1) = Chan::new();
let (p2,c2) = Chan::new();
task::spawn(proc() {
s2.access(|| {
let _ = p2.recv();
c1.send(());
})
});
s.access(|| {
c2.send(());
let _ = p1.recv();
})
}
#[test]
fn test_sem_runtime_friendly_blocking() {
// Force the runtime to schedule two threads on the same sched_loop.
// When one blocks, it should schedule the other one.
let s = Semaphore::new(1);
let s2 = s.clone();
let (p, c) = Chan::new();
let mut child_data = Some((s2, c));
s.access(|| {
let (s2, c) = child_data.take_unwrap();
task::spawn(proc() {
c.send(());
s2.access(|| { });
c.send(());
});
let _ = p.recv(); // wait for child to come alive
for _ in range(0, 5) { task::deschedule(); } // let the child contend
});
let _ = p.recv(); // wait for child to be done
}
/************************************************************************
* Mutex tests
************************************************************************/
#[test]
fn test_mutex_lock() {
// Unsafely achieve shared state, and do the textbook
// "load tmp = move ptr; inc tmp; store ptr <- tmp" dance.
let (p, c) = Chan::new();
let m = Mutex::new();
let m2 = m.clone();
let mut sharedstate = ~0;
{
let ptr: *int = &*sharedstate;
task::spawn(proc() {
let sharedstate: &mut int =
unsafe { cast::transmute(ptr) };
access_shared(sharedstate, &m2, 10);
c.send(());
});
}
{
access_shared(sharedstate, &m, 10);
let _ = p.recv();
assert_eq!(*sharedstate, 20);
}
fn access_shared(sharedstate: &mut int, m: &Mutex, n: uint) {
for _ in range(0, n) {
m.lock(|| {
let oldval = *sharedstate;
task::deschedule();
*sharedstate = oldval + 1;
})
}
}
}
#[test]
fn test_mutex_cond_wait() {
let m = Mutex::new();
// Child wakes up parent
m.lock_cond(|cond| {
let m2 = m.clone();
task::spawn(proc() {
m2.lock_cond(|cond| {
let woken = cond.signal();
assert!(woken);
})
});
cond.wait();
});
// Parent wakes up child
let (port,chan) = Chan::new();
let m3 = m.clone();
task::spawn(proc() {
m3.lock_cond(|cond| {
chan.send(());
cond.wait();
chan.send(());
})
});
let _ = port.recv(); // Wait until child gets in the mutex
m.lock_cond(|cond| {
let woken = cond.signal();
assert!(woken);
});
let _ = port.recv(); // Wait until child wakes up
}
#[cfg(test)]
fn test_mutex_cond_broadcast_helper(num_waiters: uint) {
let m = Mutex::new();
let mut ports = ~[];
for _ in range(0, num_waiters) {
let mi = m.clone();
let (port, chan) = Chan::new();
ports.push(port);
task::spawn(proc() {
mi.lock_cond(|cond| {
chan.send(());
cond.wait();
chan.send(());
})
});
}
// wait until all children get in the mutex
for port in ports.mut_iter() { let _ = port.recv(); }
m.lock_cond(|cond| {
let num_woken = cond.broadcast();
assert_eq!(num_woken, num_waiters);
});
// wait until all children wake up
for port in ports.mut_iter() { let _ = port.recv(); }
}
#[test]
fn test_mutex_cond_broadcast() {
test_mutex_cond_broadcast_helper(12);
}
#[test]
fn test_mutex_cond_broadcast_none() {
test_mutex_cond_broadcast_helper(0);
}
#[test]
fn test_mutex_cond_no_waiter() {
let m = Mutex::new();
let m2 = m.clone();
task::try(proc() {
m.lock_cond(|_x| { })
});
m2.lock_cond(|cond| {
assert!(!cond.signal());
})
}
#[test]
fn test_mutex_killed_simple() {
// Mutex must get automatically unlocked if failed/killed within.
let m = Mutex::new();
let m2 = m.clone();
let result: result::Result<(), ~Any> = task::try(proc() {
m2.lock(|| {
fail!();
})
});
assert!(result.is_err());
// child task must have finished by the time try returns
m.lock(|| { })
}
#[ignore(reason = "linked failure")]
#[test]
fn test_mutex_killed_cond() {
// Getting killed during cond wait must not corrupt the mutex while
// unwinding (e.g. double unlock).
let m = Mutex::new();
let m2 = m.clone();
let result: result::Result<(), ~Any> = task::try(proc() {
let (p, c) = Chan::new();
task::spawn(proc() { // linked
let _ = p.recv(); // wait for sibling to get in the mutex
task::deschedule();