forked from flashinfer-ai/flashinfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_batch_paged_prefill_sm90_inst.py
114 lines (92 loc) · 3.18 KB
/
generate_batch_paged_prefill_sm90_inst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""
Copyright (c) 2024 by FlashInfer team.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import re
import sys
from pathlib import Path
from .literal_map import dtype_literal, idtype_literal, mask_mode_literal
def get_cu_file_str(
head_dim,
pos_encoding_mode,
allow_fp16_qk_reduction,
mask_mode,
dtype_q,
dtype_kv,
dtype_out,
idtype,
):
pos_encoding_mode = None
allow_fp16_qk_reduction = None
def get_insts(attention_variant):
return """
template cudaError_t BatchPrefillWithPagedKVCacheDispatched
<{head_dim},
{mask_mode},
/*USE_SWA=*/true,
/*SAME_SCHEDULE_FOR_ALL_HEADS=*/true,
{attention_variant}>
(Params& params, cudaStream_t stream);
template cudaError_t BatchPrefillWithPagedKVCacheDispatched
<{head_dim},
{mask_mode},
/*USE_SWA=*/true,
/*SAME_SCHEDULE_FOR_ALL_HEADS=*/false,
{attention_variant}>
(Params& params, cudaStream_t stream);
template cudaError_t BatchPrefillWithPagedKVCacheDispatched
<{head_dim},
{mask_mode},
/*USE_SWA=*/false,
/*SAME_SCHEDULE_FOR_ALL_HEADS=*/true,
{attention_variant}>
(Params& params, cudaStream_t stream);
template cudaError_t BatchPrefillWithPagedKVCacheDispatched
<{head_dim},
{mask_mode},
/*USE_SWA=*/false,
/*SAME_SCHEDULE_FOR_ALL_HEADS=*/false,
{attention_variant}>
(Params& params, cudaStream_t stream);
""".format(
head_dim=head_dim,
mask_mode=mask_mode_literal[int(mask_mode)],
attention_variant=attention_variant,
)
dtype_q = dtype_literal[dtype_q]
dtype_kv = dtype_literal[dtype_kv]
dtype_out = dtype_literal[dtype_out]
idtype = idtype_literal[idtype]
content = f""" // batch_paged_prefill_sm90 template inst
#include <flashinfer/attention/hopper/params.cuh>
#include <flashinfer/attention/hopper/prefill_sm90.cuh>
#include <flashinfer/attention/hopper/variants.cuh>
#include <flashinfer/cutlass_utils.cuh>
namespace flashinfer {{
using DTypeQ = cutlass_dtype_t<{dtype_q}>;
using DTypeKV = cutlass_dtype_t<{dtype_kv}>;
using DTypeO = cutlass_dtype_t<{dtype_out}>;
using Params = BatchPrefillPagedParams<DTypeQ, DTypeKV, DTypeO, {idtype}>;
{get_insts("LogitsSoftCap<Params>")}
{get_insts("StandardAttention<Params>")}
}}"""
return content
if __name__ == "__main__":
pattern = (
r"batch_paged_prefill_head_([0-9]+)_posenc_([0-9]+)_"
r"fp16qkred_([a-z]+)_mask_([0-9]+)_dtypeq_([a-z0-9]+)_dtypekv_([a-z0-9]+)_"
r"dtypeout_([a-z0-9]+)_idtype_([a-z0-9]+)_sm90\.cu"
)
compiled_pattern = re.compile(pattern)
path = Path(sys.argv[1])
fname = path.name
match = compiled_pattern.match(fname)
path.write_text(get_cu_file_str(*match.groups()))