|
| 1 | +from typing import Dict, Any, Optional, Union, List, Callable |
| 2 | + |
| 3 | +from spark_pipeline_framework.logger.log_level import LogLevel |
| 4 | +from spark_pipeline_framework.utilities.capture_parameters import capture_parameters |
| 5 | +from pyspark.ml import Transformer |
| 6 | +from pyspark.sql.dataframe import DataFrame |
| 7 | +from spark_pipeline_framework.logger.yarn_logger import get_logger |
| 8 | +from spark_pipeline_framework.progress_logger.progress_logger import ProgressLogger |
| 9 | +from spark_pipeline_framework.transformers.framework_transformer.v1.framework_transformer import ( |
| 10 | + FrameworkTransformer, |
| 11 | +) |
| 12 | + |
| 13 | + |
| 14 | +class FrameworkExceptionHandlerTransformer(FrameworkTransformer): |
| 15 | + # noinspection PyUnusedLocal |
| 16 | + @capture_parameters |
| 17 | + def __init__( |
| 18 | + self, |
| 19 | + *, |
| 20 | + raise_on_exception: Optional[Union[bool, Callable[[DataFrame], bool]]] = True, |
| 21 | + error_exception: Optional[Exception] = Exception, |
| 22 | + stages: Union[List[Transformer], Callable[[], List[Transformer]]], |
| 23 | + exception_stages: Optional[ |
| 24 | + Union[List[Transformer], Callable[[], List[Transformer]]] |
| 25 | + ] = None, |
| 26 | + name: Optional[str] = None, |
| 27 | + parameters: Optional[Dict[str, Any]] = None, |
| 28 | + progress_logger: Optional[ProgressLogger] = None, |
| 29 | + ): |
| 30 | + """ |
| 31 | + Executes a sequence of stages (transformers) and, in case of an exception, executes a separate |
| 32 | + sequence of exception-handling stages. |
| 33 | +
|
| 34 | + :param: raise_on_exception: Determines whether to raise exceptions when errors occur. |
| 35 | + :param: error_exception: The exception type to catch. |
| 36 | + :param: stages: The primary sequence of transformers to execute. |
| 37 | + :param: exception_stages: Stages to execute if an error occurs. |
| 38 | + :param: name: Name of the transformer. |
| 39 | + :param: parameters: Additional parameters. |
| 40 | + :param: progress_logger: Logger instance for tracking execution. |
| 41 | +
|
| 42 | + """ |
| 43 | + super().__init__( |
| 44 | + name=name, parameters=parameters, progress_logger=progress_logger |
| 45 | + ) |
| 46 | + |
| 47 | + self.logger = get_logger(__name__) |
| 48 | + |
| 49 | + self.raise_on_exception: Optional[Union[bool, Callable[[DataFrame], bool]]] = ( |
| 50 | + raise_on_exception |
| 51 | + ) |
| 52 | + |
| 53 | + self.error_exception: Optional[Exception] = error_exception |
| 54 | + self.stages: Union[List[Transformer], Callable[[], List[Transformer]]] = stages |
| 55 | + self.exception_stages: Optional[ |
| 56 | + Union[List[Transformer], Callable[[], List[Transformer]]] |
| 57 | + ] = (exception_stages or []) |
| 58 | + |
| 59 | + self.loop_id: Optional[str] = None |
| 60 | + |
| 61 | + kwargs = self._input_kwargs |
| 62 | + self.setParams(**kwargs) |
| 63 | + |
| 64 | + async def _transform_async(self, df): |
| 65 | + """ |
| 66 | + Executes the transformation pipeline asynchronously. |
| 67 | +
|
| 68 | + - Runs `stages` normally. |
| 69 | + - If an exception occurs, logs the error and executes `exception_stages` if provided. |
| 70 | + - Optionally raises exceptions based on `raise_on_exception`. |
| 71 | + """ |
| 72 | + progress_logger: Optional[ProgressLogger] = self.getProgressLogger() |
| 73 | + stage_name = "" |
| 74 | + raise_on_exception = ( |
| 75 | + self.raise_on_exception |
| 76 | + if not callable(self.raise_on_exception) |
| 77 | + else self.raise_on_exception(df) |
| 78 | + ) |
| 79 | + |
| 80 | + async def run_pipeline( |
| 81 | + df: DataFrame, |
| 82 | + stages: Union[List[Transformer], Callable[[], List[Transformer]]], |
| 83 | + progress_logger: Optional[ProgressLogger], |
| 84 | + ): |
| 85 | + stages: List[Transformer] = stages if not callable(stages) else stages() |
| 86 | + nonlocal stage_name |
| 87 | + |
| 88 | + for stage in stages: |
| 89 | + stage_name = ( |
| 90 | + stage.getName() |
| 91 | + if hasattr(stage, "getName") |
| 92 | + else stage.__class__.__name__ |
| 93 | + ) |
| 94 | + if progress_logger: |
| 95 | + progress_logger.start_mlflow_run( |
| 96 | + run_name=stage_name, is_nested=True |
| 97 | + ) |
| 98 | + if hasattr(stage, "set_loop_id"): |
| 99 | + stage.set_loop_id(self.loop_id) |
| 100 | + df = ( |
| 101 | + await stage.transform_async(df) |
| 102 | + if hasattr(stage, "transform_async") |
| 103 | + else stage.transform(df) |
| 104 | + ) |
| 105 | + if progress_logger: |
| 106 | + progress_logger.end_mlflow_run() |
| 107 | + |
| 108 | + try: |
| 109 | + await run_pipeline(df, self.stages, progress_logger) |
| 110 | + except Exception as e: |
| 111 | + if progress_logger: |
| 112 | + progress_logger.write_to_log( |
| 113 | + self.getName() or "FrameworkExceptionHandlerTransformer", |
| 114 | + f"Failed while running steps with error: {e}. Run execution steps: {isinstance(e, self.error_exception)}", |
| 115 | + log_level=LogLevel.INFO, |
| 116 | + ) |
| 117 | + |
| 118 | + try: |
| 119 | + if isinstance(e, self.error_exception): |
| 120 | + await run_pipeline(df, self.exception_stages, progress_logger) |
| 121 | + except Exception as err: |
| 122 | + err.args = (f"In Exception Stage ({stage_name})", *err.args) |
| 123 | + raise err |
| 124 | + |
| 125 | + # Raise error if `raise_on_exception` is True or if an exception other than `self.error_exception` is thrown. |
| 126 | + if raise_on_exception or not isinstance(e, self.error_exception): |
| 127 | + e.args = (f"In Stage ({stage_name})", *e.args) |
| 128 | + raise e |
| 129 | + |
| 130 | + return df |
| 131 | + |
| 132 | + def as_dict(self) -> Dict[str, Any]: |
| 133 | + |
| 134 | + return { |
| 135 | + **(super().as_dict()), |
| 136 | + "raise_on_exception": self.raise_on_exception, |
| 137 | + "stages": ( |
| 138 | + [s.as_dict() for s in self.stages] # type: ignore |
| 139 | + if not callable(self.stages) |
| 140 | + else str(self.stages) |
| 141 | + ), |
| 142 | + "exception_stages": ( |
| 143 | + [s.as_dict() for s in self.else_stages] # type: ignore |
| 144 | + if self.else_stages and not callable(self.else_stages) |
| 145 | + else str(self.else_stages) |
| 146 | + ), |
| 147 | + } |
0 commit comments