|
14 | 14 | from invokeai.backend.patches.layer_patcher import LayerPatcher
|
15 | 15 | from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
|
16 | 16 | from invokeai.backend.patches.layers.flux_control_lora_layer import FluxControlLoRALayer
|
17 |
| -from invokeai.backend.patches.layers.diffusers_ada_ln_lora_layer import DiffusersAdaLN_LoRALayer |
18 | 17 | from invokeai.backend.patches.layers.lokr_layer import LoKRLayer
|
19 | 18 | from invokeai.backend.patches.layers.lora_layer import LoRALayer
|
20 | 19 | from invokeai.backend.patches.layers.merged_layer_patch import MergedLayerPatch, Range
|
@@ -284,7 +283,6 @@ def test_inference_autocast_from_cpu_to_device(device: str, layer_under_test: La
|
284 | 283 | "multiple_loras",
|
285 | 284 | "concatenated_lora",
|
286 | 285 | "flux_control_lora",
|
287 |
| - "diffusers_adaLN_lora", |
288 | 286 | "single_lokr",
|
289 | 287 | ]
|
290 | 288 | )
|
@@ -372,16 +370,6 @@ def patch_under_test(request: pytest.FixtureRequest) -> PatchUnderTest:
|
372 | 370 | )
|
373 | 371 | input = torch.randn(1, in_features)
|
374 | 372 | return ([(lokr_layer, 0.7)], input)
|
375 |
| - elif layer_type == "diffusers_adaLN_lora": |
376 |
| - lora_layer = DiffusersAdaLN_LoRALayer( |
377 |
| - up=torch.randn(out_features, rank), |
378 |
| - mid=None, |
379 |
| - down=torch.randn(rank, in_features), |
380 |
| - alpha=1.0, |
381 |
| - bias=torch.randn(out_features), |
382 |
| - ) |
383 |
| - input = torch.randn(1, in_features) |
384 |
| - return ([(lora_layer, 0.7)], input) |
385 | 373 | else:
|
386 | 374 | raise ValueError(f"Unsupported layer_type: {layer_type}")
|
387 | 375 |
|
|
0 commit comments