Skip to content

Latest commit

 

History

History
403 lines (318 loc) · 15.9 KB

File metadata and controls

403 lines (318 loc) · 15.9 KB
title description publishdate attribution
gRPC Proxyless Service Mesh
Introduction to Istio support for gRPC's proxyless service mesh features.
2021-10-28
Steven Landow (Google)

Istio dynamically configures its Envoy sidecar proxies using a set of discovery APIs, collectively known as the xDS APIs. These APIs aim to become a universal data-plane API. The gRPC project has significant support for the xDS APIs, which means you can manage gRPC workloads without having to deploy an Envoy sidecar along with them. You can learn more about the integration in a KubeCon EU 2021 talk from Megan Yahya. The latest updates on gRPC's support can be found in their proposals along with implementation status.

Istio 1.11 adds experimental support for adding gRPC services directly to the mesh. We support basic service discovery, some VirtualService based traffic policy, and mutual TLS.

Supported Features

The current implementation of the xDS APIs within gRPC is limited in some areas compared to Envoy. The following features should work, although this is not an exhaustive list and other features may have partial functionality:

  • Basic service discovery. Your gRPC service can reach other pods and virtual machines registered in the mesh.
  • DestinationRule:
    • Subsets: Your gRPC service can split traffic based on label selectors to different groups of instances.
    • The only Istio loadBalancer currently supported is ROUND_ROBIN, consistentHash will be added in future versions of Istio (it is supported by gRPC).
    • tls settings are restricted to DISABLE or ISTIO_MUTUAL. Other modes will be treated as DISABLE.
  • VirtualService:
    • Header match and URI match in the format /ServiceName/RPCName.
    • Override destination host and subset.
    • Weighted traffic shifting.
  • PeerAuthentication:
    • Only DISABLE and STRICT are supported. Other modes will be treated as DISABLE.
    • Support for auto-mTLS may exist in a future release.

Other features including faults, retries, timeouts, mirroring and rewrite rules may be supported in a future release. Some of these features are awaiting implementation in gRPC, and others require work in Istio to support. The status of xDS features in gRPC can be found here. The status of Istio's support will exist in future official docs.

{{< warning >}} This is feature is experimental. Standard Istio features will become supported over time along with improvements to the overall design. {{< /warning >}}

Architecture Overview

{{< image width="80%" link="./architecture.svg" caption="Diagram of how gRPC services communicate with the istiod" >}}

Although this doesn't use a proxy for data plane communication, it still requires an agent for initialization and communication with the control-plane. First, the agent generates a bootstrap file at startup the same way it would generate bootstrap for Envoy. This tells the gRPC library how to connect to istiod, where it can find certificates for data plane communication, and what metadata to send to the control plane. Next, the agent acts as an xDS proxy, connecting and authenticating with istiod on the application's behalf. Finally, the agent fetches and rotates certificates used in data plane traffic.

Changes to application code

{{< tip >}} This section covers gRPC’s XDS support in Go. Similar APIs exist for other languages. {{< /tip >}}

To enable the xDS features in gRPC, there are a handful of required changes your application must make. Your gRPC version should be at least 1.39.0.

In the client

The following side-effect import will register the xDS resolvers and balancers within gRPC. It should be added in your main package or in the same package calling grpc.Dial.

{{< text go >}} import _ "google.golang.org/grpc/xds" {{< /text >}}

When creating a gRPC connection the URL must use the xds:/// scheme.

{{< text go >}} conn, err := grpc.DialContext(ctx, "xds:///foo.ns.svc.cluster.local:7070") {{< /text >}}

Additionally, for (m)TLS support, a special TransportCredentials option has to be passed to DialContext. The FallbackCreds allow us to succeed when istiod doesn’t send security config.

{{< text go >}} import "google.golang.org/grpc/credentials/xds"

...

creds, err := xds.NewClientCredentials(xds.ClientOptions{ FallbackCreds: insecure.NewCredentials() }) // handle err conn, err := grpc.DialContext( ctx, "xds:///foo.ns.svc.cluster.local:7070", grpc.WithTransportCredentials(creds), ) {{< /text >}}

On the server

To support server-side configurations, such as mTLS, there are a couple of modifications that must be made.

First, we use a special constructor to create the GRPCServer:

{{< text go >}} import "google.golang.org/grpc/xds"

...

server = xds.NewGRPCServer() RegisterFooServer(server, &fooServerImpl) {{< /text >}}

If your protoc generated Go code is out of date, you may need to regenerate it to be compatible with the xDS server. Your generated RegisterFooServer function should look like the following:

{{< text go >}} func RegisterFooServer(s grpc.ServiceRegistrar, srv FooServer) { s.RegisterService(&FooServer_ServiceDesc, srv) } {{< /text >}}

Finally, as with the client-side changes, we must enable security support:

{{< text go >}} creds, err := xds.NewServerCredentials(xdscreds.ServerOptions{FallbackCreds: insecure.NewCredentials()}) // handle err server = xds.NewGRPCServer(grpc.Creds(creds)) {{< /text >}}

In your Kubernetes Deployment

Assuming your application code is compatible, the Pod simply needs the annotation inject.istio.io/templates: grpc-agent. This adds a sidecar container running the agent described above, and some environment variables that gRPC uses to find the bootstrap file and enable certain features.

For gRPC servers, your Pod should also be annotated with proxy.istio.io/config: '{"holdApplicationUntilProxyStarts": true}' to make sure the in-agent xDS proxy and bootstrap file are ready before your gRPC server is initialized.

Example

In this guide you will deploy echo, an application that already supports both server-side and client-side proxyless gRPC. With this app you can try out some supported traffic policies enabling mTLS.

Prerequisites

This guide requires the Istio (1.11+) control plane to be installed before proceeding.

Deploy the application

Create an injection-enabled namespace echo-grpc. Next deploy two instances of the echo app as well as the Service.

{{< text bash >}} $ kubectl create namespace echo-grpc $ kubectl label namespace echo-grpc istio-injection=enabled $ kubectl -n echo-grpc apply -f samples/grpc-echo/grpc-echo.yaml {{< /text >}}

Make sure the two pods are running:

{{< text bash >}} $ kubectl -n echo-grpc get pods NAME READY STATUS RESTARTS AGE echo-v1-69d6d96cb7-gpcpd 2/2 Running 0 58s echo-v2-5c6cbf6dc7-dfhcb 2/2 Running 0 58s {{< /text >}}

Test the gRPC resolver

First, port-forward 17171 to one of the Pods. This port is a non-xDS backed gRPC server that allows making requests from the port-forwarded Pod.

{{< text bash >}} $ kubectl -n echo-grpc port-forward $(kubectl -n echo-grpc get pods -l version=v1 -ojsonpath='{.items[0].metadata.name}') 17171 & {{< /text >}}

Next, we can fire off a batch of 5 requests:

{{< text bash >}} $ grpcurl -plaintext -d '{"url": "xds:///echo.echo-grpc.svc.cluster.local:7070", "count": 5}' :17171 proto.EchoTestService/ForwardEcho | jq -r '.output | join("")' | grep Hostname Handling connection for 17171 [0 body] Hostname=echo-v1-7cf5b76586-bgn6t [1 body] Hostname=echo-v2-cf97bd94d-qf628 [2 body] Hostname=echo-v1-7cf5b76586-bgn6t [3 body] Hostname=echo-v2-cf97bd94d-qf628 [4 body] Hostname=echo-v1-7cf5b76586-bgn6t {{< /text >}}

You can also use Kubernetes-like name resolution for short names:

{{< text bash >}} $ grpcurl -plaintext -d '{"url": "xds:///echo:7070"}' :17171 proto.EchoTestService/ForwardEcho | jq -r '.output | join ("")' | grep Hostname [0 body] Hostname=echo-v1-7cf5b76586-ltr8q $ grpcurl -plaintext -d '{"url": "xds:///echo.echo-grpc:7070"}' :17171 proto.EchoTestService/ForwardEcho | jq -r '.output | join("")' | grep Hostname [0 body] Hostname=echo-v1-7cf5b76586-ltr8q $ grpcurl -plaintext -d '{"url": "xds:///echo.echo-grpc.svc:7070"}' :17171 proto.EchoTestService/ForwardEcho | jq -r '.output | join("")' | grep Hostname [0 body] Hostname=echo-v2-cf97bd94d-jt5mf {{< /text >}}

Creating subsets with destination rule

First, create a subset for each version of the workload.

{{< text bash >}} $ cat <<EOF | kubectl apply -f - apiVersion: networking.istio.io/v1alpha3 kind: DestinationRule metadata: name: echo-versions namespace: echo-grpc spec: host: echo.echo-grpc.svc.cluster.local subsets:

  • name: v1 labels: version: v1
  • name: v2 labels: version: v2 EOF {{< /text >}}

Traffic shifting

Using the subsets defined above, you can send 80 percent of the traffic to a specific version:

{{< text bash >}} $ cat <<EOF | kubectl apply -f - apiVersion: networking.istio.io/v1beta1 kind: VirtualService metadata: name: echo-weights namespace: echo-grpc spec: hosts:

  • echo.echo-grpc.svc.cluster.local http:
  • route:
    • destination: host: echo.echo-grpc.svc.cluster.local subset: v1 weight: 20
    • destination: host: echo.echo-grpc.svc.cluster.local subset: v2 weight: 80 EOF {{< /text >}}

Now, send a set of 10 requests:

{{< text bash >}} $ grpcurl -plaintext -d '{"url": "xds:///echo.echo-grpc.svc.cluster.local:7070", "count": 10}' :17171 proto.EchoTestService/ForwardEcho | jq -r '.output | join("")' | grep ServiceVersion {{< /text >}}

The response should contain mostly v2 responses:

{{< text plain >}} [0 body] ServiceVersion=v2 [1 body] ServiceVersion=v2 [2 body] ServiceVersion=v1 [3 body] ServiceVersion=v2 [4 body] ServiceVersion=v1 [5 body] ServiceVersion=v2 [6 body] ServiceVersion=v2 [7 body] ServiceVersion=v2 [8 body] ServiceVersion=v2 [9 body] ServiceVersion=v2 {{< /text >}}

Enabling mTLS

Due to the changes to the application itself required to enable security in gRPC, Istio's traditional method of automatically detecting mTLS support is unreliable. For this reason, the initial release requires explicitly enabling mTLS on both the client and server.

To enable client-side mTLS, apply a DestinationRule with tls settings:

{{< text bash >}} $ cat <<EOF | kubectl apply -f - apiVersion: networking.istio.io/v1alpha3 kind: DestinationRule metadata: name: echo-mtls namespace: echo-grpc spec: host: echo.echo-grpc.svc.cluster.local trafficPolicy: tls: mode: ISTIO_MUTUAL EOF {{< /text >}}

Now an attempt to call the server that is not yet configured for mTLS will fail.

{{< text bash >}} $ grpcurl -plaintext -d '{"url": "xds:///echo.echo-grpc.svc.cluster.local:7070"}' :17171 proto.EchoTestService/ForwardEcho | jq -r '.output | join("")' Handling connection for 17171 ERROR: Code: Unknown Message: 1/1 requests had errors; first error: rpc error: code = Unavailable desc = all SubConns are in TransientFailure {{< /text >}}

To enable server-side mTLS, apply a PeerAuthentication.

{{< warning >}} The following policy forces STRICT mTLS for the entire namespace. {{< /warning >}}

{{< text bash >}} $ cat <<EOF | kubectl apply -f - apiVersion: security.istio.io/v1beta1 kind: PeerAuthentication metadata: name: echo-mtls namespace: echo-grpc spec: mtls: mode: STRICT EOF {{< /text >}}

Requests will start to succeed after applying the policy.

{{< text bash >}} $ grpcurl -plaintext -d '{"url": "xds:///echo.echo-grpc.svc.cluster.local:7070"}' :17171 proto.EchoTestService/ForwardEcho | jq -r '.output | join("")' Handling connection for 17171 [0] grpcecho.Echo(&{xds:///echo.echo-grpc.svc.cluster.local:7070 map[] 0 5s false }) [0 body] x-request-id=0 [0 body] Host=echo.echo-grpc.svc.cluster.local:7070 [0 body] content-type=application/grpc [0 body] user-agent=grpc-go/1.39.1 [0 body] StatusCode=200 [0 body] ServiceVersion=v1 [0 body] ServicePort=17070 [0 body] Cluster= [0 body] IP=10.68.1.18 [0 body] IstioVersion= [0 body] Echo= [0 body] Hostname=echo-v1-7cf5b76586-z5p8l {{< /text >}}

Limitations

The initial release comes with several limitations that may be fixed in a future version:

  • Auto-mTLS isn't supported, and permissive mode isn't supported. Instead we require explicit mTLS configuration with STRICT on the server and ISTIO_MUTUAL on the client. Envoy can be used during the migration to STRICT.
  • grpc.Serve(listener) or grpc.Dial("xds:///...") called before the bootstrap is written or xDS proxy is ready can cause a failure. holdApplicationUntilProxyStarts can be used to work around this, or the application can be more robust to these failures.
  • If the xDS-enabled gRPC server uses mTLS then you will need to make sure your health checks can work around this. Either a separate port should be used, or your health-checking client needs a way to get the proper client certificates.
  • The implementation of xDS in gRPC does not match Envoys. Certain behaviors may be different, and some features may be missing. The feature status for gRPC provides more detail. Make sure to test that any Istio configuration actually applies on your proxyless gRPC apps.

Performance

Experiment Setup

  • Using Fortio, a Go-based load testing app
    • Slightly modified, to support gRPC’s XDS features (PR)
  • Resources:
    • GKE 1.20 cluster with 3 e2-standard-16 nodes (16 CPUs + 64 GB memory each)
    • Fortio client and server apps: 1.5 vCPU, 1000 MiB memory
    • Sidecar (istio-agent and possibly Envoy proxy): 1 vCPU, 512 MiB memory
  • Workload types tested:
    • Baseline: regular gRPC with no Envoy proxy or Proxyless xDS in use
    • Envoy: standard istio-agent + Envoy proxy sidecar
    • Proxyless: gRPC using the xDS gRPC server implementation and xds:/// resolver on the client
    • mTLS enabled/disabled via PeerAuthentication and DestinationRule

Latency

{{< image width="80%" link="./latencies_p50.svg" caption="p50 latency comparison chart" >}} {{< image width="80%" link="./latencies_p99.svg" caption="p99 latency comparison chart" >}}

There is a marginal increase in latency when using the proxyless gRPC resolvers. Compared to Envoy this is a massive improvement that still allows for advanced traffic management features and mTLS.

istio-proxy container resource usage

Client mCPU Client Memory (MiB) Server mCPU Server Memory (MiB)
Envoy Plaintext 320.44 66.93 243.78 64.91
Envoy mTLS 340.87 66.76 309.82 64.82
Proxyless Plaintext 0.72 23.54 0.84 24.31
Proxyless mTLS 0.73 25.05 0.78 25.43

Even though we still require an agent, the agent uses less than 0.1% of a full vCPU, and only 25 MiB of memory, which is less than half of what running Envoy requires.

These metrics don’t include additional resource usage by gRPC in the application container, but serve to demonstrate the resource usage impact of the istio-agent when running in this mode.