-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathsqlite.py
713 lines (595 loc) · 24 KB
/
sqlite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
import logging
import os
import sqlite3
from collections.abc import Iterable, Sequence
from contextlib import contextmanager
from functools import wraps
from time import sleep
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Optional,
Union,
)
import sqlalchemy
from sqlalchemy import MetaData, Table, UniqueConstraint, exists, select
from sqlalchemy.dialects import sqlite
from sqlalchemy.schema import CreateIndex, CreateTable, DropTable
from sqlalchemy.sql import func
from sqlalchemy.sql.elements import BinaryExpression, BooleanClauseList
from sqlalchemy.sql.expression import bindparam, cast
from sqlalchemy.sql.selectable import Select
from tqdm.auto import tqdm
import datachain.sql.sqlite
from datachain.data_storage import AbstractDBMetastore, AbstractWarehouse
from datachain.data_storage.db_engine import DatabaseEngine
from datachain.data_storage.schema import DefaultSchema
from datachain.dataset import DatasetRecord, StorageURI
from datachain.error import DataChainError
from datachain.sql.sqlite import create_user_defined_sql_functions, sqlite_dialect
from datachain.sql.sqlite.base import load_usearch_extension
from datachain.sql.types import SQLType
from datachain.utils import DataChainDir, batched_it
if TYPE_CHECKING:
from sqlalchemy.dialects.sqlite import Insert
from sqlalchemy.engine.base import Engine
from sqlalchemy.schema import SchemaItem
from sqlalchemy.sql._typing import _FromClauseArgument, _OnClauseArgument
from sqlalchemy.sql.elements import ColumnElement
from sqlalchemy.types import TypeEngine
from datachain.lib.file import File
logger = logging.getLogger("datachain")
RETRY_START_SEC = 0.01
RETRY_MAX_TIMES = 10
RETRY_FACTOR = 2
DETECT_TYPES = sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES
datachain.sql.sqlite.setup()
quote_schema = sqlite_dialect.identifier_preparer.quote_schema
quote = sqlite_dialect.identifier_preparer.quote
def _get_in_memory_uri():
return "file::memory:?cache=shared"
def get_retry_sleep_sec(retry_count: int) -> int:
return RETRY_START_SEC * (RETRY_FACTOR**retry_count)
def retry_sqlite_locks(func):
# This retries the database modification in case of concurrent access
@wraps(func)
def wrapper(*args, **kwargs):
exc = None
for retry_count in range(RETRY_MAX_TIMES):
try:
return func(*args, **kwargs)
except sqlite3.OperationalError as operror:
exc = operror
sleep(get_retry_sleep_sec(retry_count))
raise exc
return wrapper
def get_db_file_in_memory(
db_file: Optional[str] = None, in_memory: bool = False
) -> Optional[str]:
"""Get in-memory db_file and check that conflicting arguments are not provided."""
if in_memory:
if db_file and db_file != ":memory:":
raise RuntimeError("A db_file cannot be specified if in_memory is True")
db_file = ":memory:"
return db_file
class SQLiteDatabaseEngine(DatabaseEngine):
dialect = sqlite_dialect
db: sqlite3.Connection
db_file: Optional[str]
is_closed: bool
def __init__(
self,
engine: "Engine",
metadata: "MetaData",
db: sqlite3.Connection,
db_file: Optional[str] = None,
):
self.engine = engine
self.metadata = metadata
self.db = db
self.db_file = db_file
self.is_closed = False
@classmethod
def from_db_file(cls, db_file: Optional[str] = None) -> "SQLiteDatabaseEngine":
return cls(*cls._connect(db_file=db_file))
@staticmethod
def _connect(
db_file: Optional[str] = None,
) -> tuple["Engine", "MetaData", sqlite3.Connection, str]:
try:
if db_file == ":memory:":
# Enable multithreaded usage of the same in-memory db
db = sqlite3.connect(
_get_in_memory_uri(), uri=True, detect_types=DETECT_TYPES
)
else:
db_file = db_file or DataChainDir.find().db
db = sqlite3.connect(db_file, detect_types=DETECT_TYPES)
create_user_defined_sql_functions(db)
engine = sqlalchemy.create_engine(
"sqlite+pysqlite:///", creator=lambda: db, future=True
)
# ensure we run SA on_connect init (e.g it registers regexp function),
# also makes sure that it's consistent. Otherwise in some cases it
# seems we are getting different results if engine object is used in a
# different thread first and enine is not used in the Main thread.
engine.connect().close()
db.isolation_level = None # Use autocommit mode
db.execute("PRAGMA foreign_keys = ON")
db.execute("PRAGMA cache_size = -102400") # 100 MiB
# Enable Write-Ahead Log Journaling
db.execute("PRAGMA journal_mode = WAL")
db.execute("PRAGMA synchronous = NORMAL")
db.execute("PRAGMA case_sensitive_like = ON")
if os.environ.get("DEBUG_SHOW_SQL_QUERIES"):
import sys
db.set_trace_callback(lambda stmt: print(stmt, file=sys.stderr))
load_usearch_extension(db)
return engine, MetaData(), db, db_file
except RuntimeError:
raise DataChainError("Can't connect to SQLite DB") from None
def clone(self) -> "SQLiteDatabaseEngine":
"""Clones DatabaseEngine implementation."""
return SQLiteDatabaseEngine.from_db_file(self.db_file)
def clone_params(self) -> tuple[Callable[..., Any], list[Any], dict[str, Any]]:
"""
Returns the function, args, and kwargs needed to instantiate a cloned copy
of this DatabaseEngine implementation, for use in separate processes
or machines.
"""
return (
SQLiteDatabaseEngine.from_db_file,
[self.db_file],
{},
)
def _reconnect(self) -> None:
if not self.is_closed:
raise RuntimeError("Cannot reconnect on still-open DB!")
engine, metadata, db, db_file = self._connect(db_file=self.db_file)
self.engine = engine
self.metadata = metadata
self.db = db
self.db_file = db_file
self.is_closed = False
def get_table(self, name: str) -> Table:
if self.is_closed:
# Reconnect in case of being closed previously.
self._reconnect()
return super().get_table(name)
@retry_sqlite_locks
def execute(
self,
query,
cursor: Optional[sqlite3.Cursor] = None,
conn=None,
) -> sqlite3.Cursor:
if self.is_closed:
# Reconnect in case of being closed previously.
self._reconnect()
if cursor is not None:
result = cursor.execute(*self.compile_to_args(query))
elif conn is not None:
result = conn.execute(*self.compile_to_args(query))
else:
result = self.db.execute(*self.compile_to_args(query))
if isinstance(query, CreateTable) and query.element.indexes:
for index in query.element.indexes:
self.execute(CreateIndex(index, if_not_exists=True), cursor=cursor)
return result
@retry_sqlite_locks
def executemany(
self, query, params, cursor: Optional[sqlite3.Cursor] = None, conn=None
) -> sqlite3.Cursor:
if cursor:
return cursor.executemany(self.compile(query).string, params)
if conn:
return conn.executemany(self.compile(query).string, params)
return self.db.executemany(self.compile(query).string, params)
@retry_sqlite_locks
def execute_str(self, sql: str, parameters=None) -> sqlite3.Cursor:
if parameters is None:
return self.db.execute(sql)
return self.db.execute(sql, parameters)
def insert_dataframe(self, table_name: str, df) -> int:
return df.to_sql(
table_name,
self.db,
if_exists="append",
index=False,
method="multi",
chunksize=1000,
)
def cursor(self, factory=None):
if factory is None:
return self.db.cursor()
return self.db.cursor(factory)
def close(self) -> None:
self.db.close()
self.is_closed = True
@contextmanager
def transaction(self):
db = self.db
with db:
db.execute("begin")
yield db
def has_table(self, name: str) -> bool:
"""
Return True if a table exists with the given name
We cannot simply use `inspect(engine).has_table(name)` like the
parent class does because that will return False for a table
created during a pending transaction. Instead, we check the
sqlite_master table.
"""
query = select(
exists(
select(1)
.select_from(sqlalchemy.table("sqlite_master"))
.where(
(sqlalchemy.column("type") == "table")
& (sqlalchemy.column("name") == name)
)
)
)
return bool(next(self.execute(query))[0])
def create_table(self, table: "Table", if_not_exists: bool = True) -> None:
self.execute(CreateTable(table, if_not_exists=if_not_exists))
def drop_table(self, table: "Table", if_exists: bool = False) -> None:
self.execute(DropTable(table, if_exists=if_exists))
def rename_table(self, old_name: str, new_name: str):
comp_old_name = quote_schema(old_name)
comp_new_name = quote_schema(new_name)
self.execute_str(f"ALTER TABLE {comp_old_name} RENAME TO {comp_new_name}")
class SQLiteMetastore(AbstractDBMetastore):
"""
SQLite Metastore uses SQLite3 for storing indexed data locally.
This is currently used for the local cli.
"""
db: "SQLiteDatabaseEngine"
def __init__(
self,
uri: Optional[StorageURI] = None,
db: Optional["SQLiteDatabaseEngine"] = None,
db_file: Optional[str] = None,
in_memory: bool = False,
):
uri = uri or StorageURI("")
self.schema: DefaultSchema = DefaultSchema()
super().__init__(uri)
# needed for dropping tables in correct order for tests because of
# foreign keys
self.default_table_names: list[str] = []
db_file = get_db_file_in_memory(db_file, in_memory)
self.db = db or SQLiteDatabaseEngine.from_db_file(db_file)
self._init_tables()
def __exit__(self, exc_type, exc_value, traceback) -> None:
"""Close connection upon exit from context manager."""
self.close()
def clone(
self,
uri: Optional[StorageURI] = None,
use_new_connection: bool = False,
) -> "SQLiteMetastore":
uri = uri or StorageURI("")
if not uri and self.uri:
uri = self.uri
return SQLiteMetastore(uri=uri, db=self.db.clone())
def clone_params(self) -> tuple[Callable[..., Any], list[Any], dict[str, Any]]:
"""
Returns the class, args, and kwargs needed to instantiate a cloned copy of this
SQLiteDataStorage implementation, for use in separate processes or machines.
"""
return (
SQLiteMetastore.init_after_clone,
[],
{
"uri": self.uri,
"db_clone_params": self.db.clone_params(),
},
)
@classmethod
def init_after_clone(
cls,
*,
uri: StorageURI,
db_clone_params: tuple[Callable, list, dict[str, Any]],
) -> "SQLiteMetastore":
(db_class, db_args, db_kwargs) = db_clone_params
return cls(uri=uri, db=db_class(*db_args, **db_kwargs))
def _init_tables(self) -> None:
"""Initialize tables."""
self.db.create_table(self._datasets, if_not_exists=True)
self.default_table_names.append(self._datasets.name)
self.db.create_table(self._datasets_versions, if_not_exists=True)
self.default_table_names.append(self._datasets_versions.name)
self.db.create_table(self._datasets_dependencies, if_not_exists=True)
self.default_table_names.append(self._datasets_dependencies.name)
self.db.create_table(self._jobs, if_not_exists=True)
self.default_table_names.append(self._jobs.name)
@classmethod
def _datasets_columns(cls) -> list["SchemaItem"]:
"""Datasets table columns."""
return [*super()._datasets_columns(), UniqueConstraint("name")]
def _datasets_insert(self) -> "Insert":
return sqlite.insert(self._datasets)
def _datasets_versions_insert(self) -> "Insert":
return sqlite.insert(self._datasets_versions)
def _datasets_dependencies_insert(self) -> "Insert":
return sqlite.insert(self._datasets_dependencies)
#
# Dataset dependencies
#
def _dataset_dependencies_select_columns(self) -> list["SchemaItem"]:
return [
self._datasets_dependencies.c.id,
self._datasets_dependencies.c.dataset_id,
self._datasets_dependencies.c.dataset_version_id,
self._datasets.c.name,
self._datasets_versions.c.version,
self._datasets_versions.c.created_at,
]
#
# Jobs
#
def _jobs_insert(self) -> "Insert":
return sqlite.insert(self._jobs)
class SQLiteWarehouse(AbstractWarehouse):
"""
SQLite Warehouse uses SQLite3 for storing indexed data locally.
This is currently used for the local cli.
"""
db: "SQLiteDatabaseEngine"
# Cache for our defined column types to dialect specific TypeEngine relations
_col_python_type: ClassVar[dict[type, "TypeEngine"]] = {}
def __init__(
self,
db: Optional["SQLiteDatabaseEngine"] = None,
db_file: Optional[str] = None,
in_memory: bool = False,
):
self.schema: DefaultSchema = DefaultSchema()
super().__init__()
db_file = get_db_file_in_memory(db_file, in_memory)
self.db = db or SQLiteDatabaseEngine.from_db_file(db_file)
def __exit__(self, exc_type, exc_value, traceback) -> None:
"""Close connection upon exit from context manager."""
self.close()
def clone(self, use_new_connection: bool = False) -> "SQLiteWarehouse":
return SQLiteWarehouse(db=self.db.clone())
def clone_params(self) -> tuple[Callable[..., Any], list[Any], dict[str, Any]]:
"""
Returns the class, args, and kwargs needed to instantiate a cloned copy of this
SQLiteDataStorage implementation, for use in separate processes or machines.
"""
return (
SQLiteWarehouse.init_after_clone,
[],
{"db_clone_params": self.db.clone_params()},
)
@classmethod
def init_after_clone(
cls,
*,
db_clone_params: tuple[Callable, list, dict[str, Any]],
) -> "SQLiteWarehouse":
(db_class, db_args, db_kwargs) = db_clone_params
return cls(db=db_class(*db_args, **db_kwargs))
def _reflect_tables(self, filter_tables=None):
"""
Since some tables are prone to schema extension, meaning we can add
additional columns to it, we should reflect changes in metadata
to have the latest columns when dealing with those tables.
If filter function is defined, it's used to filter out tables to reflect,
otherwise all tables are reflected
"""
self.db.metadata.reflect(
bind=self.db.engine,
extend_existing=True,
only=filter_tables,
)
def is_ready(self, timeout: Optional[int] = None) -> bool:
return True
def create_dataset_rows_table(
self,
name: str,
columns: Sequence["sqlalchemy.Column"] = (),
if_not_exists: bool = True,
) -> Table:
table = self.schema.dataset_row_cls.new_table(
name,
columns=columns,
metadata=self.db.metadata,
)
self.db.create_table(table, if_not_exists=if_not_exists)
return table
def get_dataset_sources(
self, dataset: DatasetRecord, version: int
) -> list[StorageURI]:
dr = self.dataset_rows(dataset, version)
query = dr.select(dr.c("source", object_name="file")).distinct()
cur = self.db.cursor()
cur.row_factory = sqlite3.Row # type: ignore[assignment]
return [
StorageURI(row["file__source"])
for row in self.db.execute(query, cursor=cur)
]
def merge_dataset_rows(
self,
src: DatasetRecord,
dst: DatasetRecord,
src_version: int,
dst_version: int,
) -> None:
dst_empty = False
if not self.db.has_table(self.dataset_table_name(src.name, src_version)):
# source table doesn't exist, nothing to do
return
src_dr = self.dataset_rows(src, src_version).table
if not self.db.has_table(self.dataset_table_name(dst.name, dst_version)):
# destination table doesn't exist, create it
self.create_dataset_rows_table(
self.dataset_table_name(dst.name, dst_version),
columns=src_dr.columns,
)
dst_empty = True
dst_dr = self.dataset_rows(dst, dst_version).table
merge_fields = [c.name for c in src_dr.columns if c.name != "sys__id"]
select_src = select(*(getattr(src_dr.columns, f) for f in merge_fields))
if dst_empty:
# we don't need union, but just select from source to destination
insert_query = sqlite.insert(dst_dr).from_select(merge_fields, select_src)
else:
dst_version_latest = None
# find the previous version of the destination dataset
dst_previous_versions = [
v.version
for v in dst.versions # type: ignore [union-attr]
if v.version < dst_version
]
if dst_previous_versions:
dst_version_latest = max(dst_previous_versions)
dst_dr_latest = self.dataset_rows(dst, dst_version_latest).table
select_dst_latest = select(
*(getattr(dst_dr_latest.c, f) for f in merge_fields)
)
union_query = sqlalchemy.union(select_src, select_dst_latest)
insert_query = (
sqlite.insert(dst_dr)
.from_select(merge_fields, union_query)
.prefix_with("OR IGNORE")
)
self.db.execute(insert_query)
def prepare_entries(self, entries: "Iterable[File]") -> Iterable[dict[str, Any]]:
return (e.model_dump() for e in entries)
def insert_rows(self, table: Table, rows: Iterable[dict[str, Any]]) -> None:
rows = list(rows)
if not rows:
return
with self.db.transaction() as conn:
# transactions speeds up inserts significantly as there is no separate
# transaction created for each insert row
self.db.executemany(
table.insert().values({f: bindparam(f) for f in rows[0]}),
rows,
conn=conn,
)
def insert_dataset_rows(self, df, dataset: DatasetRecord, version: int) -> int:
dr = self.dataset_rows(dataset, version)
return self.db.insert_dataframe(dr.table.name, df)
def instr(self, source, target) -> "ColumnElement":
return cast(func.instr(source, target), sqlalchemy.Boolean)
def get_table(self, name: str) -> sqlalchemy.Table:
# load table with latest schema to metadata
self._reflect_tables(filter_tables=lambda t, _: t == name)
return self.db.metadata.tables[name]
def python_type(self, col_type: Union["TypeEngine", "SQLType"]) -> Any:
if isinstance(col_type, SQLType):
# converting our defined column types to dialect specific TypeEngine
col_type_cls = type(col_type)
if col_type_cls not in self._col_python_type:
self._col_python_type[col_type_cls] = col_type.type_engine(
sqlite_dialect
)
col_type = self._col_python_type[col_type_cls]
return col_type.python_type
def dataset_table_export_file_names(
self, dataset: DatasetRecord, version: int
) -> list[str]:
raise NotImplementedError("Exporting dataset table not implemented for SQLite")
def export_dataset_table(
self,
bucket_uri: str,
dataset: DatasetRecord,
version: int,
client_config=None,
) -> list[str]:
raise NotImplementedError("Exporting dataset table not implemented for SQLite")
def copy_table(
self,
table: Table,
query: Select,
progress_cb: Optional[Callable[[int], None]] = None,
) -> None:
if len(query._group_by_clause) > 0:
select_q = query.with_only_columns(
*[c for c in query.selected_columns if c.name != "sys__id"]
)
q = table.insert().from_select(list(select_q.selected_columns), select_q)
self.db.execute(q)
return
if "sys__id" in query.selected_columns:
col_id = query.selected_columns.sys__id
else:
col_id = sqlalchemy.column("sys__id")
select_ids = query.with_only_columns(col_id)
ids = self.db.execute(select_ids).fetchall()
select_q = (
query.with_only_columns(
*[c for c in query.selected_columns if c.name != "sys__id"]
)
.offset(None)
.limit(None)
)
for batch in batched_it(ids, 10_000):
batch_ids = [row[0] for row in batch]
select_q._where_criteria = (col_id.in_(batch_ids),)
q = table.insert().from_select(list(select_q.selected_columns), select_q)
self.db.execute(q)
if progress_cb:
progress_cb(len(batch_ids))
def join(
self,
left: "_FromClauseArgument",
right: "_FromClauseArgument",
onclause: "_OnClauseArgument",
inner: bool = True,
full: bool = False,
columns=None,
) -> "Select":
"""
Join two tables together.
"""
if not full:
join_query = sqlalchemy.join(
left,
right,
onclause,
isouter=not inner,
)
return sqlalchemy.select(*columns).select_from(join_query)
left_right_join = sqlalchemy.select(*columns).select_from(
sqlalchemy.join(left, right, onclause, isouter=True)
)
right_left_join = sqlalchemy.select(*columns).select_from(
sqlalchemy.join(right, left, onclause, isouter=True)
)
def add_left_rows_filter(exp: BinaryExpression):
"""
Adds filter to right_left_join to remove unmatched left table rows by
getting column names that need to be NULL from BinaryExpressions in onclause
"""
return right_left_join.where(
getattr(left.c, exp.left.name) == None # type: ignore[union-attr] # noqa: E711
)
if isinstance(onclause, BinaryExpression):
right_left_join = add_left_rows_filter(onclause)
if isinstance(onclause, BooleanClauseList):
for c in onclause.get_children():
if isinstance(c, BinaryExpression):
right_left_join = add_left_rows_filter(c)
union = sqlalchemy.union(left_right_join, right_left_join).subquery()
return sqlalchemy.select(*union.c).select_from(union)
def create_pre_udf_table(self, query: "Select") -> "Table":
"""
Create a temporary table from a query for use in a UDF.
"""
columns = [
sqlalchemy.Column(c.name, c.type)
for c in query.selected_columns
if c.name != "sys__id"
]
table = self.create_udf_table(columns)
with tqdm(desc="Preparing", unit=" rows", leave=False) as pbar:
self.copy_table(table, query, progress_cb=pbar.update)
return table