Skip to content

Latest commit

 

History

History
220 lines (135 loc) · 7.19 KB

File metadata and controls

220 lines (135 loc) · 7.19 KB

dcusumkbn

Calculate the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

Usage

var dcusumkbn = require( '@stdlib/blas/ext/base/dcusumkbn' );

dcusumkbn( N, sum, x, strideX, y, strideY )

Computes the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );

dcusumkbn( x.length, 0.0, x, 1, y, 1 );
// y => <Float64Array>[ 1.0, -1.0, 1.0 ]

x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
y = new Float64Array( x.length );

dcusumkbn( x.length, 10.0, x, 1, y, 1 );
// y => <Float64Array>[ 11.0, 9.0, 11.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • sum: initial sum.
  • x: input Float64Array.
  • strideX: index increment for x.
  • y: output Float64Array.
  • strideY: index increment for y.

The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative sum of every other element in the strided input array,

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float64Array( x.length );

var v = dcusumkbn( 4, 0.0, x, 2, y, 1 );
// y => <Float64Array>[ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

dcusumkbn( 4, 0.0, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]

dcusumkbn.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )

Computes the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm and alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );

dcusumkbn.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 );
// y => <Float64Array>[ 1.0, -1.0, 1.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, offsetX and offsetY parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative sum of every other value in the strided input array starting from the second value and to store in the last N elements of the strided output array starting from the last element

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float64Array( x.length );

dcusumkbn.ndarray( 4, 0.0, x, 2, 1, y, -1, y.length-1 );
// y => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]

Notes

  • If N <= 0, both functions return y unchanged.

Examples

var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array/filled-by' );
var Float64Array = require( '@stdlib/array/float64' );
var dcusumkbn = require( '@stdlib/blas/ext/base/dcusumkbn' );

var x = filledarrayBy( 10, 'float64', discreteUniform( 0, 100 ) );
var y = new Float64Array( x.length );

console.log( x );
console.log( y );

dcusumkbn( x.length, 0.0, x, 1, y, -1 );
console.log( y );

References

  • Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.

See Also