forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_aggregate.py
288 lines (216 loc) · 9.3 KB
/
test_aggregate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# -*- coding: utf-8 -*-
"""
test .agg behavior / note that .apply is tested generally in test_groupby.py
"""
from collections import OrderedDict
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series, concat
from pandas.core.base import SpecificationError
from pandas.core.groupby.grouper import Grouping
import pandas.util.testing as tm
def test_agg_regression1(tsframe):
grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.agg(np.mean)
expected = grouped.mean()
tm.assert_frame_equal(result, expected)
def test_agg_must_agg(df):
grouped = df.groupby('A')['C']
msg = "Must produce aggregated value"
with pytest.raises(Exception, match=msg):
grouped.agg(lambda x: x.describe())
with pytest.raises(Exception, match=msg):
grouped.agg(lambda x: x.index[:2])
def test_agg_ser_multi_key(df):
# TODO(wesm): unused
ser = df.C # noqa
f = lambda x: x.sum()
results = df.C.groupby([df.A, df.B]).aggregate(f)
expected = df.groupby(['A', 'B']).sum()['C']
tm.assert_series_equal(results, expected)
def test_groupby_aggregation_mixed_dtype():
# GH 6212
expected = DataFrame({
'v1': [5, 5, 7, np.nan, 3, 3, 4, 1],
'v2': [55, 55, 77, np.nan, 33, 33, 44, 11]},
index=MultiIndex.from_tuples([(1, 95), (1, 99), (2, 95), (2, 99),
('big', 'damp'),
('blue', 'dry'),
('red', 'red'), ('red', 'wet')],
names=['by1', 'by2']))
df = DataFrame({
'v1': [1, 3, 5, 7, 8, 3, 5, np.nan, 4, 5, 7, 9],
'v2': [11, 33, 55, 77, 88, 33, 55, np.nan, 44, 55, 77, 99],
'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan,
12],
'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99,
np.nan, np.nan]
})
g = df.groupby(['by1', 'by2'])
result = g[['v1', 'v2']].mean()
tm.assert_frame_equal(result, expected)
def test_agg_apply_corner(ts, tsframe):
# nothing to group, all NA
grouped = ts.groupby(ts * np.nan)
assert ts.dtype == np.float64
# groupby float64 values results in Float64Index
exp = Series([], dtype=np.float64,
index=pd.Index([], dtype=np.float64))
tm.assert_series_equal(grouped.sum(), exp)
tm.assert_series_equal(grouped.agg(np.sum), exp)
tm.assert_series_equal(grouped.apply(np.sum), exp,
check_index_type=False)
# DataFrame
grouped = tsframe.groupby(tsframe['A'] * np.nan)
exp_df = DataFrame(columns=tsframe.columns, dtype=float,
index=pd.Index([], dtype=np.float64))
tm.assert_frame_equal(grouped.sum(), exp_df, check_names=False)
tm.assert_frame_equal(grouped.agg(np.sum), exp_df, check_names=False)
tm.assert_frame_equal(grouped.apply(np.sum), exp_df.iloc[:, :0],
check_names=False)
def test_agg_grouping_is_list_tuple(ts):
df = tm.makeTimeDataFrame()
grouped = df.groupby(lambda x: x.year)
grouper = grouped.grouper.groupings[0].grouper
grouped.grouper.groupings[0] = Grouping(ts.index, list(grouper))
result = grouped.agg(np.mean)
expected = grouped.mean()
tm.assert_frame_equal(result, expected)
grouped.grouper.groupings[0] = Grouping(ts.index, tuple(grouper))
result = grouped.agg(np.mean)
expected = grouped.mean()
tm.assert_frame_equal(result, expected)
def test_agg_python_multiindex(mframe):
grouped = mframe.groupby(['A', 'B'])
result = grouped.agg(np.mean)
expected = grouped.mean()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('groupbyfunc', [
lambda x: x.weekday(),
[lambda x: x.month, lambda x: x.weekday()],
])
def test_aggregate_str_func(tsframe, groupbyfunc):
grouped = tsframe.groupby(groupbyfunc)
# single series
result = grouped['A'].agg('std')
expected = grouped['A'].std()
tm.assert_series_equal(result, expected)
# group frame by function name
result = grouped.aggregate('var')
expected = grouped.var()
tm.assert_frame_equal(result, expected)
# group frame by function dict
result = grouped.agg(OrderedDict([['A', 'var'],
['B', 'std'],
['C', 'mean'],
['D', 'sem']]))
expected = DataFrame(OrderedDict([['A', grouped['A'].var()],
['B', grouped['B'].std()],
['C', grouped['C'].mean()],
['D', grouped['D'].sem()]]))
tm.assert_frame_equal(result, expected)
def test_aggregate_item_by_item(df):
grouped = df.groupby('A')
aggfun = lambda ser: ser.size
result = grouped.agg(aggfun)
foo = (df.A == 'foo').sum()
bar = (df.A == 'bar').sum()
K = len(result.columns)
# GH5782
# odd comparisons can result here, so cast to make easy
exp = pd.Series(np.array([foo] * K), index=list('BCD'),
dtype=np.float64, name='foo')
tm.assert_series_equal(result.xs('foo'), exp)
exp = pd.Series(np.array([bar] * K), index=list('BCD'),
dtype=np.float64, name='bar')
tm.assert_almost_equal(result.xs('bar'), exp)
def aggfun(ser):
return ser.size
result = DataFrame().groupby(df.A).agg(aggfun)
assert isinstance(result, DataFrame)
assert len(result) == 0
def test_wrap_agg_out(three_group):
grouped = three_group.groupby(['A', 'B'])
def func(ser):
if ser.dtype == np.object:
raise TypeError
else:
return ser.sum()
result = grouped.aggregate(func)
exp_grouped = three_group.loc[:, three_group.columns != 'C']
expected = exp_grouped.groupby(['A', 'B']).aggregate(func)
tm.assert_frame_equal(result, expected)
def test_agg_multiple_functions_maintain_order(df):
# GH #610
funcs = [('mean', np.mean), ('max', np.max), ('min', np.min)]
result = df.groupby('A')['C'].agg(funcs)
exp_cols = Index(['mean', 'max', 'min'])
tm.assert_index_equal(result.columns, exp_cols)
def test_multiple_functions_tuples_and_non_tuples(df):
# #1359
funcs = [('foo', 'mean'), 'std']
ex_funcs = [('foo', 'mean'), ('std', 'std')]
result = df.groupby('A')['C'].agg(funcs)
expected = df.groupby('A')['C'].agg(ex_funcs)
tm.assert_frame_equal(result, expected)
result = df.groupby('A').agg(funcs)
expected = df.groupby('A').agg(ex_funcs)
tm.assert_frame_equal(result, expected)
def test_agg_multiple_functions_too_many_lambdas(df):
grouped = df.groupby('A')
funcs = ['mean', lambda x: x.mean(), lambda x: x.std()]
msg = 'Function names must be unique, found multiple named <lambda>'
with pytest.raises(SpecificationError, match=msg):
grouped.agg(funcs)
def test_more_flexible_frame_multi_function(df):
grouped = df.groupby('A')
exmean = grouped.agg(OrderedDict([['C', np.mean], ['D', np.mean]]))
exstd = grouped.agg(OrderedDict([['C', np.std], ['D', np.std]]))
expected = concat([exmean, exstd], keys=['mean', 'std'], axis=1)
expected = expected.swaplevel(0, 1, axis=1).sort_index(level=0, axis=1)
d = OrderedDict([['C', [np.mean, np.std]], ['D', [np.mean, np.std]]])
result = grouped.aggregate(d)
tm.assert_frame_equal(result, expected)
# be careful
result = grouped.aggregate(OrderedDict([['C', np.mean],
['D', [np.mean, np.std]]]))
expected = grouped.aggregate(OrderedDict([['C', np.mean],
['D', [np.mean, np.std]]]))
tm.assert_frame_equal(result, expected)
def foo(x):
return np.mean(x)
def bar(x):
return np.std(x, ddof=1)
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
d = OrderedDict([['C', np.mean],
['D', OrderedDict([['foo', np.mean],
['bar', np.std]])]])
result = grouped.aggregate(d)
d = OrderedDict([['C', [np.mean]], ['D', [foo, bar]]])
expected = grouped.aggregate(d)
tm.assert_frame_equal(result, expected)
def test_multi_function_flexible_mix(df):
# GH #1268
grouped = df.groupby('A')
# Expected
d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
['D', {'sum': 'sum'}]])
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
expected = grouped.aggregate(d)
# Test 1
d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
['D', 'sum']])
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = grouped.aggregate(d)
tm.assert_frame_equal(result, expected)
# Test 2
d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
['D', ['sum']]])
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = grouped.aggregate(d)
tm.assert_frame_equal(result, expected)