.. currentmodule:: pandas
.. ipython:: python :suppress: import numpy as np import pandas as pd np.set_printoptions(precision=4, suppress=True) pd.options.display.max_rows = 15
Here we discuss a lot of the essential functionality common to the pandas data structures. Here's how to create some of the objects used in the examples from the previous section:
.. ipython:: python index = pd.date_range('1/1/2000', periods=8) s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e']) df = pd.DataFrame(np.random.randn(8, 3), index=index, columns=['A', 'B', 'C']) wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B', 'C', 'D'])
To view a small sample of a Series or DataFrame object, use the :meth:`~DataFrame.head` and :meth:`~DataFrame.tail` methods. The default number of elements to display is five, but you may pass a custom number.
.. ipython:: python long_series = pd.Series(np.random.randn(1000)) long_series.head() long_series.tail(3)
pandas objects have a number of attributes enabling you to access the metadata
- shape: gives the axis dimensions of the object, consistent with ndarray
- Axis labels
- Series: index (only axis)
- DataFrame: index (rows) and columns
- Panel: items, major_axis, and minor_axis
Note, these attributes can be safely assigned to!
.. ipython:: python df[:2] df.columns = [x.lower() for x in df.columns] df
To get the actual data inside a data structure, one need only access the values property:
.. ipython:: python s.values df.values wp.values
If a DataFrame or Panel contains homogeneously-typed data, the ndarray can actually be modified in-place, and the changes will be reflected in the data structure. For heterogeneous data (e.g. some of the DataFrame's columns are not all the same dtype), this will not be the case. The values attribute itself, unlike the axis labels, cannot be assigned to.
Note
When working with heterogeneous data, the dtype of the resulting ndarray will be chosen to accommodate all of the data involved. For example, if strings are involved, the result will be of object dtype. If there are only floats and integers, the resulting array will be of float dtype.
pandas has support for accelerating certain types of binary numerical and boolean operations using
the numexpr
library (starting in 0.11.0) and the bottleneck
libraries.
These libraries are especially useful when dealing with large data sets, and provide large
speedups. numexpr
uses smart chunking, caching, and multiple cores. bottleneck
is
a set of specialized cython routines that are especially fast when dealing with arrays that have
nans
.
Here is a sample (using 100 column x 100,000 row DataFrames
):
Operation | 0.11.0 (ms) | Prior Version (ms) | Ratio to Prior |
---|---|---|---|
df1 > df2 |
13.32 | 125.35 | 0.1063 |
df1 * df2 |
21.71 | 36.63 | 0.5928 |
df1 + df2 |
22.04 | 36.50 | 0.6039 |
You are highly encouraged to install both libraries. See the section :ref:`Recommended Dependencies <install.recommended_dependencies>` for more installation info.
With binary operations between pandas data structures, there are two key points of interest:
- Broadcasting behavior between higher- (e.g. DataFrame) and lower-dimensional (e.g. Series) objects.
- Missing data in computations
We will demonstrate how to manage these issues independently, though they can be handled simultaneously.
DataFrame has the methods :meth:`~DataFrame.add`, :meth:`~DataFrame.sub`, :meth:`~DataFrame.mul`, :meth:`~DataFrame.div` and related functions :meth:`~DataFrame.radd`, :meth:`~DataFrame.rsub`, ... for carrying out binary operations. For broadcasting behavior, Series input is of primary interest. Using these functions, you can use to either match on the index or columns via the axis keyword:
.. ipython:: python df = pd.DataFrame({'one' : pd.Series(np.random.randn(3), index=['a', 'b', 'c']), 'two' : pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd']), 'three' : pd.Series(np.random.randn(3), index=['b', 'c', 'd'])}) df row = df.ix[1] column = df['two'] df.sub(row, axis='columns') df.sub(row, axis=1) df.sub(column, axis='index') df.sub(column, axis=0)
.. ipython:: python :suppress: df_orig = df
Furthermore you can align a level of a multi-indexed DataFrame with a Series.
.. ipython:: python dfmi = df.copy() dfmi.index = pd.MultiIndex.from_tuples([(1,'a'),(1,'b'),(1,'c'),(2,'a')], names=['first','second']) dfmi.sub(column, axis=0, level='second')
With Panel, describing the matching behavior is a bit more difficult, so the arithmetic methods instead (and perhaps confusingly?) give you the option to specify the broadcast axis. For example, suppose we wished to demean the data over a particular axis. This can be accomplished by taking the mean over an axis and broadcasting over the same axis:
.. ipython:: python major_mean = wp.mean(axis='major') major_mean wp.sub(major_mean, axis='major')
And similarly for axis="items"
and axis="minor"
.
Note
I could be convinced to make the axis argument in the DataFrame methods match the broadcasting behavior of Panel. Though it would require a transition period so users can change their code...
In Series and DataFrame (though not yet in Panel), the arithmetic functions
have the option of inputting a fill_value, namely a value to substitute when
at most one of the values at a location are missing. For example, when adding
two DataFrame objects, you may wish to treat NaN as 0 unless both DataFrames
are missing that value, in which case the result will be NaN (you can later
replace NaN with some other value using fillna
if you wish).
.. ipython:: python :suppress: df2 = df.copy() df2['three']['a'] = 1.
.. ipython:: python df df2 df + df2 df.add(df2, fill_value=0)
Starting in v0.8, pandas introduced binary comparison methods eq, ne, lt, gt, le, and ge to Series and DataFrame whose behavior is analogous to the binary arithmetic operations described above:
.. ipython:: python df.gt(df2) df2.ne(df)
These operations produce a pandas object the same type as the left-hand-side input
that if of dtype bool
. These boolean
objects can be used in indexing operations,
see :ref:`here<indexing.boolean>`
You can apply the reductions: :attr:`~DataFrame.empty`, :meth:`~DataFrame.any`, :meth:`~DataFrame.all`, and :meth:`~DataFrame.bool` to provide a way to summarize a boolean result.
.. ipython:: python (df > 0).all() (df > 0).any()
You can reduce to a final boolean value.
.. ipython:: python (df > 0).any().any()
You can test if a pandas object is empty, via the :attr:`~DataFrame.empty` property.
.. ipython:: python df.empty pd.DataFrame(columns=list('ABC')).empty
To evaluate single-element pandas objects in a boolean context, use the method :meth:`~DataFrame.bool`:
.. ipython:: python pd.Series([True]).bool() pd.Series([False]).bool() pd.DataFrame([[True]]).bool() pd.DataFrame([[False]]).bool()
Warning
You might be tempted to do the following:
>>>if df:
...
Or
>>> df and df2
These both will raise as you are trying to compare multiple values.
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
See :ref:`gotchas<gotchas.truth>` for a more detailed discussion.
Often you may find there is more than one way to compute the same
result. As a simple example, consider df+df
and df*2
. To test
that these two computations produce the same result, given the tools
shown above, you might imagine using (df+df == df*2).all()
. But in
fact, this expression is False:
.. ipython:: python df+df == df*2 (df+df == df*2).all()
Notice that the boolean DataFrame df+df == df*2
contains some False values!
That is because NaNs do not compare as equals:
.. ipython:: python np.nan == np.nan
So, as of v0.13.1, NDFrames (such as Series, DataFrames, and Panels) have an :meth:`~DataFrame.equals` method for testing equality, with NaNs in corresponding locations treated as equal.
.. ipython:: python (df+df).equals(df*2)
Note that the Series or DataFrame index needs to be in the same order for equality to be True:
.. ipython:: python df1 = pd.DataFrame({'col':['foo', 0, np.nan]}) df2 = pd.DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0]) df1.equals(df2) df1.equals(df2.sort())
You can conveniently do element-wise comparisons when comparing a pandas data structure with a scalar value:
.. ipython:: python pd.Series(['foo', 'bar', 'baz']) == 'foo' pd.Index(['foo', 'bar', 'baz']) == 'foo'
Pandas also handles element-wise comparisons between different array-like objects of the same length:
.. ipython:: python pd.Series(['foo', 'bar', 'baz']) == pd.Index(['foo', 'bar', 'qux']) pd.Series(['foo', 'bar', 'baz']) == np.array(['foo', 'bar', 'qux'])
Trying to compare Index
or Series
objects of different lengths will
raise a ValueError:
In [55]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
ValueError: Series lengths must match to compare
In [56]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
ValueError: Series lengths must match to compare
Note that this is different from the numpy behavior where a comparison can be broadcast:
.. ipython:: python np.array([1, 2, 3]) == np.array([2])
or it can return False if broadcasting can not be done:
.. ipython:: python np.array([1, 2, 3]) == np.array([1, 2])
A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the other. An example would be two data series representing a particular economic indicator where one is considered to be of "higher quality". However, the lower quality series might extend further back in history or have more complete data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation is :meth:`~DataFrame.combine_first`, which we illustrate:
.. ipython:: python df1 = pd.DataFrame({'A' : [1., np.nan, 3., 5., np.nan], 'B' : [np.nan, 2., 3., np.nan, 6.]}) df2 = pd.DataFrame({'A' : [5., 2., 4., np.nan, 3., 7.], 'B' : [np.nan, np.nan, 3., 4., 6., 8.]}) df1 df2 df1.combine_first(df2)
The :meth:`~DataFrame.combine_first` method above calls the more general DataFrame method :meth:`~DataFrame.combine`. This method takes another DataFrame and a combiner function, aligns the input DataFrame and then passes the combiner function pairs of Series (i.e., columns whose names are the same).
So, for instance, to reproduce :meth:`~DataFrame.combine_first` as above:
.. ipython:: python combiner = lambda x, y: np.where(pd.isnull(x), y, x) df1.combine(df2, combiner)
A large number of methods for computing descriptive statistics and other related operations on :ref:`Series <api.series.stats>`, :ref:`DataFrame <api.dataframe.stats>`, and :ref:`Panel <api.panel.stats>`. Most of these are aggregations (hence producing a lower-dimensional result) like :meth:`~DataFrame.sum`, :meth:`~DataFrame.mean`, and :meth:`~DataFrame.quantile`, but some of them, like :meth:`~DataFrame.cumsum` and :meth:`~DataFrame.cumprod`, produce an object of the same size. Generally speaking, these methods take an axis argument, just like ndarray.{sum, std, ...}, but the axis can be specified by name or integer:
- Series: no axis argument needed
- DataFrame: "index" (axis=0, default), "columns" (axis=1)
- Panel: "items" (axis=0), "major" (axis=1, default), "minor" (axis=2)
For example:
.. ipython:: python df df.mean(0) df.mean(1)
All such methods have a skipna
option signaling whether to exclude missing
data (True
by default):
.. ipython:: python df.sum(0, skipna=False) df.sum(axis=1, skipna=True)
Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standardization (rendering data zero mean and standard deviation 1), very concisely:
.. ipython:: python ts_stand = (df - df.mean()) / df.std() ts_stand.std() xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0) xs_stand.std(1)
Note that methods like :meth:`~DataFrame.cumsum` and :meth:`~DataFrame.cumprod` preserve the location of NA values:
.. ipython:: python df.cumsum()
Here is a quick reference summary table of common functions. Each also takes an
optional level
parameter which applies only if the object has a
:ref:`hierarchical index<advanced.hierarchical>`.
Function | Description |
---|---|
count |
Number of non-null observations |
sum |
Sum of values |
mean |
Mean of values |
mad |
Mean absolute deviation |
median |
Arithmetic median of values |
min |
Minimum |
max |
Maximum |
mode |
Mode |
abs |
Absolute Value |
prod |
Product of values |
std |
Unbiased standard deviation |
var |
Unbiased variance |
sem |
Unbiased standard error of the mean |
skew |
Unbiased skewness (3rd moment) |
kurt |
Unbiased kurtosis (4th moment) |
quantile |
Sample quantile (value at %) |
cumsum |
Cumulative sum |
cumprod |
Cumulative product |
cummax |
Cumulative maximum |
cummin |
Cumulative minimum |
Note that by chance some NumPy methods, like mean
, std
, and sum
,
will exclude NAs on Series input by default:
.. ipython:: python np.mean(df['one']) np.mean(df['one'].values)
Series
also has a method :meth:`~Series.nunique` which will return the
number of unique non-null values:
.. ipython:: python series = pd.Series(np.random.randn(500)) series[20:500] = np.nan series[10:20] = 5 series.nunique()
There is a convenient :meth:`~DataFrame.describe` function which computes a variety of summary statistics about a Series or the columns of a DataFrame (excluding NAs of course):
.. ipython:: python series = pd.Series(np.random.randn(1000)) series[::2] = np.nan series.describe() frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e']) frame.ix[::2] = np.nan frame.describe()
You can select specific percentiles to include in the output:
.. ipython:: python series.describe(percentiles=[.05, .25, .75, .95])
By default, the median is always included.
For a non-numerical Series object, :meth:`~Series.describe` will give a simple summary of the number of unique values and most frequently occurring values:
.. ipython:: python s = pd.Series(['a', 'a', 'b', 'b', 'a', 'a', np.nan, 'c', 'd', 'a']) s.describe()
Note that on a mixed-type DataFrame object, :meth:`~DataFrame.describe` will restrict the summary to include only numerical columns or, if none are, only categorical columns:
.. ipython:: python frame = pd.DataFrame({'a': ['Yes', 'Yes', 'No', 'No'], 'b': range(4)}) frame.describe()
This behaviour can be controlled by providing a list of types as include
/exclude
arguments. The special value all
can also be used:
.. ipython:: python frame.describe(include=['object']) frame.describe(include=['number']) frame.describe(include='all')
That feature relies on :ref:`select_dtypes <basics.selectdtypes>`. Refer to there for details about accepted inputs.
The :meth:`~DataFrame.idxmin` and :meth:`~DataFrame.idxmax` functions on Series and DataFrame compute the index labels with the minimum and maximum corresponding values:
.. ipython:: python s1 = pd.Series(np.random.randn(5)) s1 s1.idxmin(), s1.idxmax() df1 = pd.DataFrame(np.random.randn(5,3), columns=['A','B','C']) df1 df1.idxmin(axis=0) df1.idxmax(axis=1)
When there are multiple rows (or columns) matching the minimum or maximum value, :meth:`~DataFrame.idxmin` and :meth:`~DataFrame.idxmax` return the first matching index:
.. ipython:: python df3 = pd.DataFrame([2, 1, 1, 3, np.nan], columns=['A'], index=list('edcba')) df3 df3['A'].idxmin()
Note
idxmin
and idxmax
are called argmin
and argmax
in NumPy.
The :meth:`~Series.value_counts` Series method and top-level function computes a histogram of a 1D array of values. It can also be used as a function on regular arrays:
.. ipython:: python data = np.random.randint(0, 7, size=50) data s = pd.Series(data) s.value_counts() pd.value_counts(data)
Similarly, you can get the most frequently occurring value(s) (the mode) of the values in a Series or DataFrame:
.. ipython:: python s5 = pd.Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7]) s5.mode() df5 = pd.DataFrame({"A": np.random.randint(0, 7, size=50), "B": np.random.randint(-10, 15, size=50)}) df5.mode()
Continuous values can be discretized using the :func:`cut` (bins based on values) and :func:`qcut` (bins based on sample quantiles) functions:
.. ipython:: python arr = np.random.randn(20) factor = pd.cut(arr, 4) factor factor = pd.cut(arr, [-5, -1, 0, 1, 5]) factor
:func:`qcut` computes sample quantiles. For example, we could slice up some normally distributed data into equal-size quartiles like so:
.. ipython:: python arr = np.random.randn(30) factor = pd.qcut(arr, [0, .25, .5, .75, 1]) factor pd.value_counts(factor)
We can also pass infinite values to define the bins:
.. ipython:: python arr = np.random.randn(20) factor = pd.cut(arr, [-np.inf, 0, np.inf]) factor
To apply your own or another library's functions to pandas objects,
you should be aware of the three methods below. The appropriate
method to use depends on whether your function expects to operate
on an entire DataFrame
or Series
, row- or column-wise, or elementwise.
- Tablewise Function Application: :meth:`~DataFrame.pipe`
- Row or Column-wise Function Application: :meth:`~DataFrame.apply`
- Elementwise function application: :meth:`~DataFrame.applymap`
.. versionadded:: 0.16.2
DataFrames
and Series
can of course just be passed into functions.
However, if the function needs to be called in a chain, consider using the :meth:`~DataFrame.pipe` method.
Compare the following
# f, g, and h are functions taking and returning ``DataFrames``
>>> f(g(h(df), arg1=1), arg2=2, arg3=3)
with the equivalent
>>> (df.pipe(h)
.pipe(g, arg1=1)
.pipe(f, arg2=2, arg3=3)
)
Pandas encourages the second style, which is known as method chaining.
pipe
makes it easy to use your own or another library's functions
in method chains, alongside pandas' methods.
In the example above, the functions f
, g
, and h
each expected the DataFrame
as the first positional argument.
What if the function you wish to apply takes its data as, say, the second argument?
In this case, provide pipe
with a tuple of (callable, data_keyword)
.
.pipe
will route the DataFrame
to the argument specified in the tuple.
For example, we can fit a regression using statsmodels. Their API expects a formula first and a DataFrame
as the second argument, data
. We pass in the function, keyword pair (sm.poisson, 'data')
to pipe
:
.. ipython:: python import statsmodels.formula.api as sm bb = pd.read_csv('data/baseball.csv', index_col='id') (bb.query('h > 0') .assign(ln_h = lambda df: np.log(df.h)) .pipe((sm.poisson, 'data'), 'hr ~ ln_h + year + g + C(lg)') .fit() .summary() )
The pipe method is inspired by unix pipes and more recently dplyr and magrittr, which
have introduced the popular (%>%)
(read pipe) operator for R.
The implementation of pipe
here is quite clean and feels right at home in python.
We encourage you to view the source code (pd.DataFrame.pipe??
in IPython).
Arbitrary functions can be applied along the axes of a DataFrame or Panel
using the :meth:`~DataFrame.apply` method, which, like the descriptive
statistics methods, take an optional axis
argument:
.. ipython:: python df.apply(np.mean) df.apply(np.mean, axis=1) df.apply(lambda x: x.max() - x.min()) df.apply(np.cumsum) df.apply(np.exp)
Depending on the return type of the function passed to :meth:`~DataFrame.apply`, the result will either be of lower dimension or the same dimension.
:meth:`~DataFrame.apply` combined with some cleverness can be used to answer many questions about a data set. For example, suppose we wanted to extract the date where the maximum value for each column occurred:
.. ipython:: python tsdf = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'], index=pd.date_range('1/1/2000', periods=1000)) tsdf.apply(lambda x: x.idxmax())
You may also pass additional arguments and keyword arguments to the :meth:`~DataFrame.apply` method. For instance, consider the following function you would like to apply:
def subtract_and_divide(x, sub, divide=1):
return (x - sub) / divide
You may then apply this function as follows:
df.apply(subtract_and_divide, args=(5,), divide=3)
Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row:
.. ipython:: python :suppress: tsdf = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'], index=pd.date_range('1/1/2000', periods=10)) tsdf.values[3:7] = np.nan
.. ipython:: python tsdf tsdf.apply(pd.Series.interpolate)
Finally, :meth:`~DataFrame.apply` takes an argument raw
which is False by default, which
converts each row or column into a Series before applying the function. When
set to True, the passed function will instead receive an ndarray object, which
has positive performance implications if you do not need the indexing
functionality.
.. seealso:: The section on :ref:`GroupBy <groupby>` demonstrates related, flexible functionality for grouping by some criterion, applying, and combining the results into a Series, DataFrame, etc.
Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods :meth:`~DataFrame.applymap` on DataFrame and analogously :meth:`~Series.map` on Series accept any Python function taking a single value and returning a single value. For example:
.. ipython:: python :suppress: df4 = df_orig.copy()
.. ipython:: python df4 f = lambda x: len(str(x)) df4['one'].map(f) df4.applymap(f)
:meth:`Series.map` has an additional feature which is that it can be used to easily "link" or "map" values defined by a secondary series. This is closely related to :ref:`merging/joining functionality <merging>`:
.. ipython:: python s = pd.Series(['six', 'seven', 'six', 'seven', 'six'], index=['a', 'b', 'c', 'd', 'e']) t = pd.Series({'six' : 6., 'seven' : 7.}) s s.map(t)
Applying with a Panel
will pass a Series
to the applied function. If the applied
function returns a Series
, the result of the application will be a Panel
. If the applied function
reduces to a scalar, the result of the application will be a DataFrame
.
Note
Prior to 0.13.1 apply
on a Panel
would only work on ufuncs
(e.g. np.sum/np.max
).
.. ipython:: python import pandas.util.testing as tm panel = tm.makePanel(5) panel panel['ItemA']
A transformational apply.
.. ipython:: python result = panel.apply(lambda x: x*2, axis='items') result result['ItemA']
A reduction operation.
.. ipython:: python panel.apply(lambda x: x.dtype, axis='items')
A similar reduction type operation
.. ipython:: python panel.apply(lambda x: x.sum(), axis='major_axis')
This last reduction is equivalent to
.. ipython:: python panel.sum('major_axis')
A transformation operation that returns a Panel
, but is computing
the z-score across the major_axis
.
.. ipython:: python result = panel.apply( lambda x: (x-x.mean())/x.std(), axis='major_axis') result result['ItemA']
Apply can also accept multiple axes in the axis
argument. This will pass a
DataFrame
of the cross-section to the applied function.
.. ipython:: python f = lambda x: ((x.T-x.mean(1))/x.std(1)).T result = panel.apply(f, axis = ['items','major_axis']) result result.loc[:,:,'ItemA']
This is equivalent to the following
.. ipython:: python result = pd.Panel(dict([ (ax, f(panel.loc[:,:,ax])) for ax in panel.minor_axis ])) result result.loc[:,:,'ItemA']
:meth:`~Series.reindex` is the fundamental data alignment method in pandas. It is used to implement nearly all other features relying on label-alignment functionality. To reindex means to conform the data to match a given set of labels along a particular axis. This accomplishes several things:
- Reorders the existing data to match a new set of labels
- Inserts missing value (NA) markers in label locations where no data for that label existed
- If specified, fill data for missing labels using logic (highly relevant to working with time series data)
Here is a simple example:
.. ipython:: python s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e']) s s.reindex(['e', 'b', 'f', 'd'])
Here, the f
label was not contained in the Series and hence appears as
NaN
in the result.
With a DataFrame, you can simultaneously reindex the index and columns:
.. ipython:: python df df.reindex(index=['c', 'f', 'b'], columns=['three', 'two', 'one'])
For convenience, you may utilize the :meth:`~Series.reindex_axis` method, which
takes the labels and a keyword axis
parameter.
Note that the Index
objects containing the actual axis labels can be
shared between objects. So if we have a Series and a DataFrame, the
following can be done:
.. ipython:: python rs = s.reindex(df.index) rs rs.index is df.index
This means that the reindexed Series's index is the same Python object as the DataFrame's index.
.. seealso:: :ref:`MultiIndex / Advanced Indexing <advanced>` is an even more concise way of doing reindexing.
Note
When writing performance-sensitive code, there is a good reason to spend
some time becoming a reindexing ninja: many operations are faster on
pre-aligned data. Adding two unaligned DataFrames internally triggers a
reindexing step. For exploratory analysis you will hardly notice the
difference (because reindex
has been heavily optimized), but when CPU
cycles matter sprinkling a few explicit reindex
calls here and there can
have an impact.
You may wish to take an object and reindex its axes to be labeled the same as another object. While the syntax for this is straightforward albeit verbose, it is a common enough operation that the :meth:`~DataFrame.reindex_like` method is available to make this simpler:
.. ipython:: python :suppress: df2 = df.reindex(['a', 'b', 'c'], columns=['one', 'two']) df3 = df2 - df2.mean()
.. ipython:: python df2 df3 df.reindex_like(df2)
The :meth:`~Series.align` method is the fastest way to simultaneously align two objects. It
supports a join
argument (related to :ref:`joining and merging <merging>`):
join='outer'
: take the union of the indexes (default)join='left'
: use the calling object's indexjoin='right'
: use the passed object's indexjoin='inner'
: intersect the indexes
It returns a tuple with both of the reindexed Series:
.. ipython:: python s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e']) s1 = s[:4] s2 = s[1:] s1.align(s2) s1.align(s2, join='inner') s1.align(s2, join='left')
For DataFrames, the join method will be applied to both the index and the columns by default:
.. ipython:: python df.align(df2, join='inner')
You can also pass an axis
option to only align on the specified axis:
.. ipython:: python df.align(df2, join='inner', axis=0)
If you pass a Series to :meth:`DataFrame.align`, you can choose to align both
objects either on the DataFrame's index or columns using the axis
argument:
.. ipython:: python df.align(df2.ix[0], axis=1)
:meth:`~Series.reindex` takes an optional parameter method
which is a
filling method chosen from the following table:
Method | Action |
---|---|
pad / ffill | Fill values forward |
bfill / backfill | Fill values backward |
nearest | Fill from the nearest index value |
We illustrate these fill methods on a simple Series:
.. ipython:: python rng = pd.date_range('1/3/2000', periods=8) ts = pd.Series(np.random.randn(8), index=rng) ts2 = ts[[0, 3, 6]] ts ts2 ts2.reindex(ts.index) ts2.reindex(ts.index, method='ffill') ts2.reindex(ts.index, method='bfill') ts2.reindex(ts.index, method='nearest')
These methods require that the indexes are ordered increasing or decreasing.
Note that the same result could have been achieved using
:ref:`fillna <missing_data.fillna>` (except for method='nearest'
) or
:ref:`interpolate <missing_data.interpolation>`:
.. ipython:: python ts2.reindex(ts.index).fillna(method='ffill')
:meth:`~Series.reindex` will raise a ValueError if the index is not monotonic increasing or descreasing. :meth:`~Series.fillna` and :meth:`~Series.interpolate` will not make any checks on the order of the index.
A method closely related to reindex
is the :meth:`~DataFrame.drop` function.
It removes a set of labels from an axis:
.. ipython:: python df df.drop(['a', 'd'], axis=0) df.drop(['one'], axis=1)
Note that the following also works, but is a bit less obvious / clean:
.. ipython:: python df.reindex(df.index.difference(['a', 'd']))
The :meth:`~DataFrame.rename` method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function.
.. ipython:: python s s.rename(str.upper)
If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique values). But if you pass a dict or Series, it need only contain a subset of the labels as keys:
.. ipython:: python df.rename(columns={'one' : 'foo', 'two' : 'bar'}, index={'a' : 'apple', 'b' : 'banana', 'd' : 'durian'})
The :meth:`~DataFrame.rename` method also provides an inplace
named
parameter that is by default False
and copies the underlying data. Pass
inplace=True
to rename the data in place.
The Panel class has a related :meth:`~Panel.rename_axis` class which can rename any of its three axes.
The behavior of basic iteration over pandas objects depends on the type. When iterating over a Series, it is regarded as array-like, and basic iteration produces the values. Other data structures, like DataFrame and Panel, follow the dict-like convention of iterating over the "keys" of the objects.
In short, basic iteration (for i in object
) produces:
- Series: values
- DataFrame: column labels
- Panel: item labels
Thus, for example, iterating over a DataFrame gives you the column names:
.. ipython:: In [0]: df = pd.DataFrame({'col1' : np.random.randn(3), 'col2' : np.random.randn(3)}, ...: index=['a', 'b', 'c']) In [0]: for col in df: ...: print(col) ...:
Pandas objects also have the dict-like :meth:`~DataFrame.iteritems` method to iterate over the (key, value) pairs.
To iterate over the rows of a DataFrame, you can use the following methods:
- :meth:`~DataFrame.iterrows`: Iterate over the rows of a DataFrame as (index, Series) pairs. This converts the rows to Series objects, which can change the dtypes and has some performance implications.
- :meth:`~DataFrame.itertuples`: Iterate over the rows of a DataFrame as tuples of the values. This is a lot faster as :meth:`~DataFrame.iterrows`, and is in most cases preferable to use to iterate over the values of a DataFrame.
Warning
Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed and can be avoided with one of the following approaches:
- Look for a vectorized solution: many operations can be performed using built-in methods or numpy functions, (boolean) indexing, ...
- When you have a function that cannot work on the full DataFrame/Series at once, it is better to use :meth:`~DataFrame.apply` instead of iterating over the values. See the docs on :ref:`function application <basics.apply>`.
- If you need to do iterative manipulations on the values but performance is important, consider writing the inner loop using e.g. cython or numba. See the :ref:`enhancing performance <enhancingperf>` section for some examples of this approach.
Warning
You should never modify something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect!
For example, in the following case setting the value has no effect:
.. ipython:: python df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c']}) for index, row in df.iterrows(): row['a'] = 10 df
Consistent with the dict-like interface, :meth:`~DataFrame.iteritems` iterates through key-value pairs:
- Series: (index, scalar value) pairs
- DataFrame: (column, Series) pairs
- Panel: (item, DataFrame) pairs
For example:
.. ipython:: In [0]: for item, frame in wp.iteritems(): ...: print(item) ...: print(frame) ...:
:meth:`~DataFrame.iterrows` allows you to iterate through the rows of a DataFrame as Series objects. It returns an iterator yielding each index value along with a Series containing the data in each row:
.. ipython:: In [0]: for row_index, row in df.iterrows(): ...: print('%s\n%s' % (row_index, row)) ...:
Note
Because :meth:`~DataFrame.iterrows` returns a Series for each row, it does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,
.. ipython:: python df_orig = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) df_orig.dtypes row = next(df_orig.iterrows())[1] row
All values in row
, returned as a Series, are now upcasted
to floats, also the original integer value in column x:
.. ipython:: python row['int'].dtype df_orig['int'].dtype
To preserve dtypes while iterating over the rows, it is better
to use :meth:`~DataFrame.itertuples` which returns tuples of the values
and which is generally much faster as iterrows
.
For instance, a contrived way to transpose the DataFrame would be:
.. ipython:: python df2 = pd.DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]}) print(df2) print(df2.T) df2_t = pd.DataFrame(dict((idx,values) for idx, values in df2.iterrows())) print(df2_t)
The :meth:`~DataFrame.itertuples` method will return an iterator yielding a tuple for each row in the DataFrame. The first element of the tuple will be the row's corresponding index value, while the remaining values are the row values.
For instance,
.. ipython:: python for row in df.itertuples(): print(row)
This method does not convert the row to a Series object but just returns the values inside a tuple. Therefore, :meth:`~DataFrame.itertuples` preserves the data type of the values and is generally faster as :meth:`~DataFrame.iterrows`.
Series
has an accessor to succinctly return datetime like properties for the
values of the Series, if it is a datetime/period like Series.
This will return a Series, indexed like the existing Series.
.. ipython:: python # datetime s = pd.Series(pd.date_range('20130101 09:10:12', periods=4)) s s.dt.hour s.dt.second s.dt.day
This enables nice expressions like this:
.. ipython:: python s[s.dt.day==2]
You can easily produces tz aware transformations:
.. ipython:: python stz = s.dt.tz_localize('US/Eastern') stz stz.dt.tz
You can also chain these types of operations:
.. ipython:: python s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
You can also format datetime values as strings with :meth:`Series.dt.strftime` which supports the same format as the standard :meth:`~datetime.datetime.strftime`.
.. ipython:: python # DatetimeIndex s = pd.Series(pd.date_range('20130101', periods=4)) s s.dt.strftime('%Y/%m/%d')
.. ipython:: python # PeriodIndex s = pd.Series(pd.period_range('20130101', periods=4)) s s.dt.strftime('%Y/%m/%d')
The .dt
accessor works for period and timedelta dtypes.
.. ipython:: python # period s = pd.Series(pd.period_range('20130101', periods=4, freq='D')) s s.dt.year s.dt.day
.. ipython:: python # timedelta s = pd.Series(pd.timedelta_range('1 day 00:00:05', periods=4, freq='s')) s s.dt.days s.dt.seconds s.dt.components
Note
Series.dt
will raise a TypeError
if you access with a non-datetimelike values
Series is equipped with a set of string processing methods that make it easy to
operate on each element of the array. Perhaps most importantly, these methods
exclude missing/NA values automatically. These are accessed via the Series's
str
attribute and generally have names matching the equivalent (scalar)
built-in string methods. For example:
.. ipython:: python s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) s.str.lower()
Powerful pattern-matching methods are provided as well, but note that pattern-matching generally uses regular expressions by default (and in some cases always uses them).
Please see :ref:`Vectorized String Methods <text.string_methods>` for a complete description.
Warning
The sorting API is substantially changed in 0.17.0, see :ref:`here <whatsnew_0170.api_breaking.sorting>` for these changes.
In particular, all sorting methods now return a new object by default, and DO NOT operate in-place (except by passing inplace=True
).
There are two obvious kinds of sorting that you may be interested in: sorting by label and sorting by actual values.
The primary method for sorting axis
labels (indexes) are the Series.sort_index()
and the DataFrame.sort_index()
methods.
.. ipython:: python unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'], columns=['three', 'two', 'one']) # DataFrame unsorted_df.sort_index() unsorted_df.sort_index(ascending=False) unsorted_df.sort_index(axis=1) # Series unsorted_df['three'].sort_index()
The :meth:`Series.sort_values` and :meth:`DataFrame.sort_values` are the entry points for value sorting (that is the values in a column or row).
:meth:`DataFrame.sort_values` can accept an optional by
argument for axis=0
which will use an arbitrary vector or a column name of the DataFrame to
determine the sort order:
.. ipython:: python df1 = pd.DataFrame({'one':[2,1,1,1],'two':[1,3,2,4],'three':[5,4,3,2]}) df1.sort_values(by='two')
The by
argument can take a list of column names, e.g.:
.. ipython:: python df1[['one', 'two', 'three']].sort_index(by=['one','two'])
These methods have special treatment of NA values via the na_position
argument:
.. ipython:: python s[2] = np.nan s.order() s.order(na_position='first')
Series has the :meth:`~Series.searchsorted` method, which works similar to :meth:`numpy.ndarray.searchsorted`.
.. ipython:: python ser = pd.Series([1, 2, 3]) ser.searchsorted([0, 3]) ser.searchsorted([0, 4]) ser.searchsorted([1, 3], side='right') ser.searchsorted([1, 3], side='left') ser = pd.Series([3, 1, 2]) ser.searchsorted([0, 3], sorter=np.argsort(ser))
.. versionadded:: 0.14.0
Series
has the :meth:`~Series.nsmallest` and :meth:`~Series.nlargest` methods which return the
smallest or largest n values. For a large Series
this can be much
faster than sorting the entire Series and calling head(n)
on the result.
.. ipython:: python s = pd.Series(np.random.permutation(10)) s s.sort_values() s.nsmallest(3) s.nlargest(3)
.. versionadded:: 0.17.0
DataFrame
also has the nlargest
and nsmallest
methods.
.. ipython:: python df = pd.DataFrame({'a': [-2, -1, 1, 10, 8, 11, -1], 'b': list('abdceff'), 'c': [1.0, 2.0, 4.0, 3.2, np.nan, 3.0, 4.0]}) df.nlargest(3, 'a') df.nlargest(5, ['a', 'c']) df.nsmallest(3, 'a') df.nsmallest(5, ['a', 'c'])
You must be explicit about sorting when the column is a multi-index, and fully specify
all levels to by
.
.. ipython:: python df1.columns = pd.MultiIndex.from_tuples([('a','one'),('a','two'),('b','three')]) df1.sort_index(by=('a','two'))
The :meth:`~DataFrame.copy` method on pandas objects copies the underlying data (though not the axis indexes, since they are immutable) and returns a new object. Note that it is seldom necessary to copy objects. For example, there are only a handful of ways to alter a DataFrame in-place:
- Inserting, deleting, or modifying a column
- Assigning to the
index
orcolumns
attributes- For homogeneous data, directly modifying the values via the
values
attribute or advanced indexing
To be clear, no pandas methods have the side effect of modifying your data; almost all methods return new objects, leaving the original object untouched. If data is modified, it is because you did so explicitly.
The main types stored in pandas objects are float
, int
, bool
,
datetime64[ns]
, timedelta[ns]
and object
. In addition these dtypes
have item sizes, e.g. int64
and int32
. A convenient :attr:`~DataFrame.dtypes``
attribute for DataFrames returns a Series with the data type of each column.
.. ipython:: python dft = pd.DataFrame(dict(A = np.random.rand(3), B = 1, C = 'foo', D = pd.Timestamp('20010102'), E = pd.Series([1.0]*3).astype('float32'), F = False, G = pd.Series([1]*3,dtype='int8'))) dft dft.dtypes
On a Series
use the :attr:`~Series.dtype` attribute.
.. ipython:: python dft['A'].dtype
If a pandas object contains data multiple dtypes IN A SINGLE COLUMN, the dtype of the
column will be chosen to accommodate all of the data types (object
is the most
general).
.. ipython:: python # these ints are coerced to floats pd.Series([1, 2, 3, 4, 5, 6.]) # string data forces an ``object`` dtype pd.Series([1, 2, 3, 6., 'foo'])
The method :meth:`~DataFrame.get_dtype_counts` will return the number of columns of
each type in a DataFrame
:
.. ipython:: python dft.get_dtype_counts()
Numeric dtypes will propagate and can coexist in DataFrames (starting in v0.11.0).
If a dtype is passed (either directly via the dtype
keyword, a passed ndarray
,
or a passed Series
, then it will be preserved in DataFrame operations. Furthermore,
different numeric dtypes will NOT be combined. The following example will give you a taste.
.. ipython:: python df1 = pd.DataFrame(np.random.randn(8, 1), columns=['A'], dtype='float32') df1 df1.dtypes df2 = pd.DataFrame(dict( A = pd.Series(np.random.randn(8), dtype='float16'), B = pd.Series(np.random.randn(8)), C = pd.Series(np.array(np.random.randn(8), dtype='uint8')) )) df2 df2.dtypes
By default integer types are int64
and float types are float64
,
REGARDLESS of platform (32-bit or 64-bit). The following will all result in int64
dtypes.
.. ipython:: python pd.DataFrame([1, 2], columns=['a']).dtypes pd.DataFrame({'a': [1, 2]}).dtypes pd.DataFrame({'a': 1 }, index=list(range(2))).dtypes
Numpy, however will choose platform-dependent types when creating arrays.
The following WILL result in int32
on 32-bit platform.
.. ipython:: python frame = pd.DataFrame(np.array([1, 2]))
Types can potentially be upcasted when combined with other types, meaning they are promoted
from the current type (say int
to float
)
.. ipython:: python df3 = df1.reindex_like(df2).fillna(value=0.0) + df2 df3 df3.dtypes
The values
attribute on a DataFrame return the lower-common-denominator of the dtypes, meaning
the dtype that can accommodate ALL of the types in the resulting homogeneous dtyped numpy array. This can
force some upcasting.
.. ipython:: python df3.values.dtype
You can use the :meth:`~DataFrame.astype` method to explicitly convert dtypes from one to another. These will by default return a copy,
even if the dtype was unchanged (pass copy=False
to change this behavior). In addition, they will raise an
exception if the astype operation is invalid.
Upcasting is always according to the numpy rules. If two different dtypes are involved in an operation, then the more general one will be used as the result of the operation.
.. ipython:: python df3 df3.dtypes # conversion of dtypes df3.astype('float32').dtypes
Note
The syntax of :meth:`~DataFrame.convert_objects` changed in 0.17.0. See :ref:`API changes <whatsnew_0170.api_breaking.convert_objects>` for more details.
:meth:`~DataFrame.convert_objects` is a method that converts columns from
the object
dtype to datetimes, timedeltas or floats. For example, to
attempt conversion of object data that are number like, e.g. could be a
string that represents a number, pass numeric=True
. By default, this will
attempt a soft conversion and so will only succeed if the entire column is
convertible. To force the conversion, add the keyword argument coerce=True
.
This will force strings and number-like objects to be numbers if
possible, and other values will be set to np.nan
.
.. ipython:: python df3['D'] = '1.' df3['E'] = '1' df3.convert_objects(numeric=True).dtypes # same, but specific dtype conversion df3['D'] = df3['D'].astype('float16') df3['E'] = df3['E'].astype('int32') df3.dtypes
To force conversion to datetime64[ns]
, pass datetime=True
and coerce=True
.
This will convert any datetime-like object to dates, forcing other values to NaT
.
This might be useful if you are reading in data which is mostly dates,
but occasionally contains non-dates that you wish to represent as missing.
.. ipython:: python import datetime s = pd.Series([datetime.datetime(2001,1,1,0,0), 'foo', 1.0, 1, pd.Timestamp('20010104'), '20010105'], dtype='O') s s.convert_objects(datetime=True, coerce=True)
Without passing coerce=True
, :meth:`~DataFrame.convert_objects` will attempt
soft conversion of any object dtypes, meaning that if all
the objects in a Series are of the same type, the Series will have that dtype.
Note that setting coerce=True
does not convert arbitrary types to either
datetime64[ns]
or timedelta64[ns]
. For example, a series containing string
dates will not be converted to a series of datetimes. To convert between types,
see :ref:`converting to timestamps <timeseries.converting>`.
Performing selection operations on integer
type data can easily upcast the data to floating
.
The dtype of the input data will be preserved in cases where nans
are not introduced (starting in 0.11.0)
See also :ref:`integer na gotchas <gotchas.intna>`
.. ipython:: python dfi = df3.astype('int32') dfi['E'] = 1 dfi dfi.dtypes casted = dfi[dfi>0] casted casted.dtypes
While float dtypes are unchanged.
.. ipython:: python dfa = df3.copy() dfa['A'] = dfa['A'].astype('float32') dfa.dtypes casted = dfa[df2>0] casted casted.dtypes
.. versionadded:: 0.14.1
The :meth:`~DataFrame.select_dtypes` method implements subsetting of columns
based on their dtype
.
First, let's create a :class:`DataFrame` with a slew of different dtypes:
.. ipython:: python df = pd.DataFrame({'string': list('abc'), 'int64': list(range(1, 4)), 'uint8': np.arange(3, 6).astype('u1'), 'float64': np.arange(4.0, 7.0), 'bool1': [True, False, True], 'bool2': [False, True, False], 'dates': pd.date_range('now', periods=3).values, 'category': pd.Series(list("ABC")).astype('category')}) df['tdeltas'] = df.dates.diff() df['uint64'] = np.arange(3, 6).astype('u8') df['other_dates'] = pd.date_range('20130101', periods=3).values df
:meth:`~DataFrame.select_dtypes` has two parameters include
and exclude
that allow you to
say "give me the columns WITH these dtypes" (include
) and/or "give the
columns WITHOUT these dtypes" (exclude
).
For example, to select bool
columns
.. ipython:: python df.select_dtypes(include=[bool])
You can also pass the name of a dtype in the numpy dtype hierarchy:
.. ipython:: python df.select_dtypes(include=['bool'])
:meth:`~pandas.DataFrame.select_dtypes` also works with generic dtypes as well.
For example, to select all numeric and boolean columns while excluding unsigned integers
.. ipython:: python df.select_dtypes(include=['number', 'bool'], exclude=['unsignedinteger'])
To select string columns you must use the object
dtype:
.. ipython:: python df.select_dtypes(include=['object'])
To see all the child dtypes of a generic dtype
like numpy.number
you
can define a function that returns a tree of child dtypes:
.. ipython:: python def subdtypes(dtype): subs = dtype.__subclasses__() if not subs: return dtype return [dtype, [subdtypes(dt) for dt in subs]]
All numpy dtypes are subclasses of numpy.generic
:
.. ipython:: python subdtypes(np.generic)
Note
Pandas also defines an additional category
dtype, which is not integrated into the normal
numpy hierarchy and wont show up with the above function.
Note
The include
and exclude
parameters must be non-string sequences.