-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgs_poly_project.py
174 lines (136 loc) · 4.48 KB
/
gs_poly_project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import itertools as it
from collections import namedtuple
from pathlib import Path
from typing import TypeAlias
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
from sympy import Symbol, integrate, pi, sqrt
GSVec = namedtuple(
"GSVec",
[
"f",
"norm",
"norm_sq",
"e",
],
)
GSVecs: TypeAlias = dict[int, GSVec]
# Polynomial basis
x = Symbol("x")
v1 = sp.Integer("1")
v2 = x
v3 = x**2
v4 = x**3
v5 = x**4
v6 = x**5
v = sp.sin(x) # Function we approximate on [-π, π]
def comp_int(f):
"""Compute integral of f on [-pi, pi]"""
return integrate(f, (x, -pi, pi))
def inp(f, g):
r"""Compute inner product of f and g
The inner product is defined as:
\begin{align*}
\langle f, g \rangle = \int_{-\pi}^{\pi} fg.
\end{align*}
i.e. the integral of the product of the functions from -π to π.
"""
return comp_int(f * g)
def norm_sq(f):
return inp(f, f)
def norm(f):
return sqrt(norm_sq(f))
def gs_step(v, gs_vecs: list[GSVec]):
"""Compute Gram-Schmidt step for vector v in basis.
gs_vecs are the Gram-Schmidt vectors computed so far
i.e. vectors for j = 1, 2, ..., k - 1
when v = v_k.
"""
return v - sum([inp(v, gs.f) / gs.norm_sq * gs.f for gs in gs_vecs])
def gram_schmidt(basis):
gs_vecs: GSVecs = dict()
f1 = basis[1]
ns_f1 = norm_sq(f1)
n_f1 = sqrt(ns_f1)
e1 = f1 / n_f1
gs_vecs[1] = GSVec(f1, n_f1, ns_f1, e1)
for k in range(2, 6 + 1):
v_k = basis[k]
f_k = gs_step(v_k, list(gs_vecs.values()))
ns_fk = norm_sq(f_k)
n_fk = sqrt(ns_fk)
gs_vecs[k] = GSVec(f_k, n_fk, ns_fk, f_k / n_fk)
return gs_vecs
def projection_gs(v, gs_vecs: GSVecs):
r"""Projects v onto the subspace spanned by the orthonormal basis.
If $e_{1}, \ldots, e_{m}$ be an orthonormal basis of $U$
then the projection of $v$ onto $U$ is given by
$$
P_{U}v =
\langle v, e_{1} \rangle e_{1}
+ \cdots
+ \langle v, e_{m} \rangle e_{m}
$$
"""
return sum([inp(v, gs.e) * gs.e for gs in gs_vecs.values()])
def taylor_sin_5(x):
return x - x**3 / 6 + x**5 / 120 # 3! = 6; 5! = 120
def plot_projection(proj):
f_proj_np = sp.lambdify(x, proj, "numpy")
def plot(xs):
fs_proj = f_proj_np(xs)
fs_sin = np.sin(xs)
fs_taylor = taylor_sin_5(xs)
# Create plot
fig, ax = plt.subplots(figsize=(8, 5))
ax.plot(xs, fs_sin, label=r"$v(x) = \sin(x)$", linestyle="dashed", color="blue")
ax.plot(xs, fs_proj, label=r"Projection $P_{U}v$", color="red")
ax.plot(
xs,
fs_taylor,
label=r"$p(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!}$",
color="green",
)
# Labels and legend
ax.set_xlabel("x")
ax.set_ylabel("f(x)")
ax.set_title("Projection and Taylor approximation of sin(x)")
ax.legend()
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
return fig
(fp := Path.cwd().joinpath("plots")).mkdir(exist_ok=True)
plot(xs=np.linspace(-np.pi, np.pi, 100)).savefig(fp / "proj.png")
plot(xs=np.linspace(2, np.pi, 500)).savefig(fp / "proj2.png")
plot(xs=np.linspace(3, np.pi, 1000)).savefig(fp / "proj3.png")
# Relative approximation error in tails
xs = np.linspace(3, np.pi, 1000)
fs_proj = f_proj_np(xs)
fs_sin = np.sin(xs)
fs_taylor = taylor_sin_5(xs)
rel_error = (fs_taylor - fs_sin) / (fs_proj - fs_sin)
print(
f"Largest relative error for x ∈ [3, π]:"
f" (x={xs[np.argmax(rel_error)]}, error= {np.max(rel_error):.2f})",
)
def test_inp_orth(gs_vecs: GSVecs):
for i, j in list(it.combinations(range(1, 6 + 1), 2)):
_inp = inp(gs_vecs[i].e, gs_vecs[j].e).evalf()
print(f"\tInner product of {i} and {j} = {_inp}")
assert np.allclose(_inp, 0)
print("\tAll inner products are zero")
def main():
basis = dict(zip(range(1, 6 + 1), [v1, v2, v3, v4, v5, v6]))
print("Creating orthonormal basis...")
gs_vecs = gram_schmidt(basis)
print("Projecting sin(x) onto orthonormal basis...")
proj = projection_gs(v, gs_vecs)
proj_a = proj.evalf(strict=True)
print("Projection: ", proj_a)
plot_projection(proj_a)
print("\nComputing pairwise inner products (might take some time)...")
test_inp_orth(gs_vecs)
print(f"\nProjection exact (latex):\n\t{sp.latex(proj)}")
if __name__ == "__main__":
main()