@@ -11,7 +11,7 @@ A Model Context Protocol (MCP) server for interacting with Keboola Connection. T
11
11
12
12
- Python 3.10 or newer
13
13
- Keboola Storage API token
14
- - Snowflake Read Only Workspace
14
+ - Snowflake or BigQuery Read Only Workspace
15
15
16
16
## Installation
17
17
@@ -70,7 +70,7 @@ To use this server with Claude Desktop, follow these steps:
70
70
],
71
71
"env" : {
72
72
"KBC_STORAGE_TOKEN" : " your-keboola-storage-token" ,
73
- "KBC_WORKSPACE_USER " : " your-workspace-user "
73
+ "KBC_WORKSPACE_SCHEMA " : " your-workspace-schema "
74
74
}
75
75
}
76
76
}
@@ -79,15 +79,15 @@ To use this server with Claude Desktop, follow these steps:
79
79
80
80
Replace:
81
81
- ` /path/to/keboola-mcp-server ` with your actual path to the cloned repository
82
- - ` your-keboola-storage-token ` with your Keboola Storage API token
83
82
- ` YOUR_REGION ` with your Keboola region (e.g., ` north-europe.azure ` , etc.). You can remove it if your region is just ` connection ` explicitly
84
- - ` your-workspace-user ` with your Snowflake workspace username
83
+ - ` your-keboola-storage-token ` with your Keboola Storage API token
84
+ - ` your-workspace-schema ` with your Snowflake schema or BigQuery dataset of your workspace
85
85
86
86
> Note: If you are using a specific version of Python (e.g. 3.11 due to some package compatibility issues),
87
87
> you'll need to update the ` command ` into using that specific version, e.g. ` /path/to/keboola-mcp-server/.venv/bin/python3.11 `
88
88
89
- > Note: The Read Only Snowflake Workspace can be created in your Keboola project. It is the same project where you got
90
- > your Storage Token. The workspace will provide all the necessary Snowflake connection parameters including the username .
89
+ > Note: The Workspace can be created in your Keboola project. It is the same project where you got
90
+ > your Storage Token. The workspace will provide all the necessary connection parameters including the schema or dataset name .
91
91
92
92
3 . After updating the configuration:
93
93
- Completely quit Claude Desktop (don't just close the window)
@@ -117,7 +117,7 @@ To use this server with Cursor AI, you have two options for configuring the tran
117
117
{
118
118
"mcpServers" : {
119
119
"keboola" : {
120
- "url" : " http://localhost:8000/sse?storage_token=YOUR-KEBOOLA-STORAGE-TOKEN&workspace_user =YOUR-WORKSPACE-USER "
120
+ "url" : " http://localhost:8000/sse?storage_token=YOUR-KEBOOLA-STORAGE-TOKEN&workspace_schema =YOUR-WORKSPACE-SCHEMA "
121
121
}
122
122
}
123
123
}
@@ -129,7 +129,7 @@ To use this server with Cursor AI, you have two options for configuring the tran
129
129
{
130
130
"mcpServers" : {
131
131
"keboola" : {
132
- "command" : " /path/to/keboola-mcp-server/venv/bin/python" ,
132
+ "command" : " /path/to/keboola-mcp-server/. venv/bin/python" ,
133
133
"args" : [
134
134
" -m" ,
135
135
" keboola_mcp_server" ,
@@ -140,7 +140,7 @@ To use this server with Cursor AI, you have two options for configuring the tran
140
140
],
141
141
"env" : {
142
142
"KBC_STORAGE_TOKEN" : " your-keboola-storage-token" ,
143
- "KBC_WORKSPACE_USER " : " your-workspace-user "
143
+ "KBC_WORKSPACE_SCHEMA " : " your-workspace-schema "
144
144
}
145
145
}
146
146
}
@@ -160,7 +160,7 @@ When running the MCP server from Windows Subsystem for Linux with Cursor AI, use
160
160
" -c" ,
161
161
" 'source /wsl_path/to/keboola-mcp-server/.env" ,
162
162
" &&" ,
163
- " /wsl_path/to/keboola-mcp-server/venv/bin/python -m keboola_mcp_server.cli --transport stdio'"
163
+ " /wsl_path/to/keboola-mcp-server/. venv/bin/python -m keboola_mcp_server.cli --transport stdio'"
164
164
]
165
165
}
166
166
}
@@ -169,21 +169,35 @@ When running the MCP server from Windows Subsystem for Linux with Cursor AI, use
169
169
- where ` /wsl_path/to/keboola-mcp-server/.env ` file contains environment variables:
170
170
``` shell
171
171
export KBC_STORAGE_TOKEN=" your-keboola-storage-token"
172
- export KBC_WORKSPACE_USER =" your-workspace-user "
172
+ export KBC_WORKSPACE_SCHEMA =" your-workspace-schema "
173
173
```
174
174
175
- Replace all placeholder values (` your_* ` ) with your actual Keboola and Snowflake credentials. These can be obtained from your Keboola project's Read Only Snowflake Workspace.
176
- Replace ` YOUR_REGION ` with your Keboola region (e.g., ` north-europe.azure ` , etc.). You can remove it if your region is just ` connection ` explicitly.
175
+ Replace:
176
+ - ` /path/to/keboola-mcp-server ` with your actual path to the cloned repository
177
+ - ` YOUR_REGION ` with your Keboola region (e.g., ` north-europe.azure ` , etc.). You can remove it if your region is just ` connection ` explicitly
178
+ - ` your-keboola-storage-token ` with your Keboola Storage API token
179
+ - ` your-workspace-schema ` with your Snowflake schema or BigQuery dataset of your workspace
177
180
178
181
After updating the configuration:
179
182
1 . Restart Cursor AI
180
183
2 . If you use the ` sse ` transport make sure to start your MCP server. You can do so by running this in the activated
181
184
virtual environment where you built the server:
182
185
```
183
- /path/to/keboola-mcp-server/venv/bin/python -m keboola_mcp_server --transport sse --api-url https://connection.YOUR_REGION.keboola.com
186
+ /path/to/keboola-mcp-server/. venv/bin/python -m keboola_mcp_server --transport sse --api-url https://connection.YOUR_REGION.keboola.com
184
187
```
185
188
3 . Cursor AI should be automatically detect your MCP server and enable it.
186
189
190
+ ## BigQuery support
191
+
192
+ If your Keboola project uses BigQuery backend you will need to set ` GOOGLE_APPLICATION_CREDENTIALS ` environment variable
193
+ in addition to ` KBC_STORAGE_TOKEN ` and ` KBC_WORKSPACE_SCHEMA ` .
194
+
195
+ 1 . Go to your Keboola BigQuery workspace and display its credentials (click ` Connect ` button).
196
+ 2 . Download the credentials file to your local disk. It is a plain JSON file.
197
+ 3 . Set the full path of the downloaded JSON credentials file to ` GOOGLE_APPLICATION_CREDENTIALS ` environment variable.
198
+
199
+ This will give your MCP server instance permissions to access your BigQuery workspace in Google Cloud.
200
+
187
201
## Available Tools
188
202
189
203
The server provides the following tools for interacting with Keboola Connection:
0 commit comments