-
Notifications
You must be signed in to change notification settings - Fork 293
/
Copy pathlora_compvis.py
602 lines (506 loc) · 23.2 KB
/
lora_compvis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import copy
import math
import re
from typing import NamedTuple
import torch
class LoRAInfo(NamedTuple):
lora_name: str
module_name: str
module: torch.nn.Module
multiplier: float
dim: int
alpha: float
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1):
""" if alpha == 0 or None, alpha is rank (no scaling). """
super().__init__()
self.lora_name = lora_name
self.lora_dim = lora_dim
if org_module.__class__.__name__ == 'Conv2d':
in_dim = org_module.in_channels
out_dim = org_module.out_channels
# self.lora_dim = min(self.lora_dim, in_dim, out_dim)
# if self.lora_dim != lora_dim:
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer('alpha', torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
self.multiplier = multiplier
self.org_forward = org_module.forward
self.org_module = org_module # remove in applying
self.mask_dic = None
self.mask = None
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def set_mask_dic(self, mask_dic):
# called before every generation
# check this module is related to h,w (not context and time emb)
if 'attn2_to_k' in self.lora_name or 'attn2_to_v' in self.lora_name or 'emb_layers' in self.lora_name:
# print(f"LoRA for context or time emb: {self.lora_name}")
self.mask_dic = None
else:
self.mask_dic = mask_dic
self.mask = None
def forward(self, x):
"""
may be cascaded.
"""
if self.mask_dic is None:
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
# regional LoRA
# calculate lora and get size
lx = self.lora_up(self.lora_down(x))
if self.mask is None:
if len(lx.size()) == 4: # b,c,h,w
area = lx.size()[2] * lx.size()[3]
else:
area = lx.size()[1] # b,seq,dim
# get mask
# print(self.lora_name, x.size(), lx.size(), area)
mask = self.mask_dic[area]
if len(lx.size()) == 3:
mask = torch.reshape(mask, (1, -1, 1))
self.mask = mask
return self.org_forward(x) + lx * self.multiplier * self.scale * self.mask
def create_network_and_apply_compvis(du_state_dict, multiplier_tenc, multiplier_unet, text_encoder, unet, **kwargs):
# get device and dtype from unet
for module in unet.modules():
if module.__class__.__name__ == "Linear":
param: torch.nn.Parameter = module.weight
# device = param.device
dtype = param.dtype
break
# get dims (rank) and alpha from state dict
modules_dim = {}
modules_alpha = {}
for key, value in du_state_dict.items():
if '.' not in key:
continue
lora_name = key.split('.')[0]
if 'alpha' in key:
modules_alpha[lora_name] = float(value.detach().to(torch.float).cpu().numpy())
elif 'lora_down' in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# support old LoRA without alpha
for key in modules_dim.keys():
if key not in modules_alpha:
modules_alpha[key] = modules_dim[key]
print(f"dimension: {set(modules_dim.values())}, alpha: {set(modules_alpha.values())}, multiplier_unet: {multiplier_unet}, multiplier_tenc: {multiplier_tenc}")
# if network_dim is None:
# print(f"The selected model is not LoRA or not trained by `sd-scripts`?")
# network_dim = 4
# network_alpha = 1
# create, apply and load weights
network = LoRANetworkCompvis(text_encoder, unet, multiplier_tenc, multiplier_unet, modules_dim, modules_alpha)
state_dict = network.apply_lora_modules(du_state_dict) # some weights are applied to text encoder
network.to(dtype) # with this, if error comes from next line, the model will be used
info = network.load_state_dict(state_dict, strict=False)
# remove redundant warnings
if len(info.missing_keys) > 4:
missing_keys = []
alpha_count = 0
for key in info.missing_keys:
if 'alpha' not in key:
missing_keys.append(key)
else:
if alpha_count == 0:
missing_keys.append(key)
alpha_count += 1
if alpha_count > 1:
missing_keys.append(
f"... and {alpha_count-1} alphas. The model doesn't have alpha, use dim (rannk) as alpha. You can ignore this message.")
info = torch.nn.modules.module._IncompatibleKeys(missing_keys, info.unexpected_keys)
return network, info
class LoRANetworkCompvis(torch.nn.Module):
# UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
# TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
UNET_TARGET_REPLACE_MODULE = ["SpatialTransformer", "ResBlock", "Downsample", "Upsample"] # , "Attention"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["ResidualAttentionBlock", "CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = 'lora_unet'
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
@classmethod
def convert_diffusers_name_to_compvis(cls, v2, du_name):
"""
convert diffusers's LoRA name to CompVis
"""
cv_name = None
if "lora_unet_" in du_name:
m = re.search(r"_down_blocks_(\d+)_attentions_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_attn_index = int(m.group(2))
du_suffix = m.group(3)
cv_index = 1 + du_block_index * 3 + du_attn_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_input_blocks_{cv_index}_1_{du_suffix}"
return cv_name
m = re.search(r"_mid_block_attentions_(\d+)_(.+)", du_name)
if m:
du_suffix = m.group(2)
cv_name = f"lora_unet_middle_block_1_{du_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_attentions_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_attn_index = int(m.group(2))
du_suffix = m.group(3)
cv_index = du_block_index * 3 + du_attn_index # 3,4,5, 6,7,8, 9,10,11
cv_name = f"lora_unet_output_blocks_{cv_index}_1_{du_suffix}"
return cv_name
m = re.search(r"_down_blocks_(\d+)_resnets_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_res_index = int(m.group(2))
du_suffix = m.group(3)
cv_suffix = {
'conv1': 'in_layers_2',
'conv2': 'out_layers_3',
'time_emb_proj': 'emb_layers_1',
'conv_shortcut': 'skip_connection'
}[du_suffix]
cv_index = 1 + du_block_index * 3 + du_res_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_input_blocks_{cv_index}_0_{cv_suffix}"
return cv_name
m = re.search(r"_down_blocks_(\d+)_downsamplers_0_conv", du_name)
if m:
block_index = int(m.group(1))
cv_index = 3 + block_index * 3
cv_name = f"lora_unet_input_blocks_{cv_index}_0_op"
return cv_name
m = re.search(r"_mid_block_resnets_(\d+)_(.+)", du_name)
if m:
index = int(m.group(1))
du_suffix = m.group(2)
cv_suffix = {
'conv1': 'in_layers_2',
'conv2': 'out_layers_3',
'time_emb_proj': 'emb_layers_1',
'conv_shortcut': 'skip_connection'
}[du_suffix]
cv_name = f"lora_unet_middle_block_{index*2}_{cv_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_resnets_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_res_index = int(m.group(2))
du_suffix = m.group(3)
cv_suffix = {
'conv1': 'in_layers_2',
'conv2': 'out_layers_3',
'time_emb_proj': 'emb_layers_1',
'conv_shortcut': 'skip_connection'
}[du_suffix]
cv_index = du_block_index * 3 + du_res_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_output_blocks_{cv_index}_0_{cv_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_upsamplers_0_conv", du_name)
if m:
block_index = int(m.group(1))
cv_index = block_index * 3 + 2
cv_name = f"lora_unet_output_blocks_{cv_index}_{bool(block_index)+1}_conv"
return cv_name
elif "lora_te_" in du_name:
m = re.search(r"_model_encoder_layers_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_suffix = m.group(2)
cv_index = du_block_index
if v2:
if 'mlp_fc1' in du_suffix:
cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in du_suffix:
cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('mlp_fc2', 'mlp_c_proj')}"
elif 'self_attn':
# handled later
cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('self_attn', 'attn')}"
else:
cv_name = f"lora_te_wrapped_transformer_text_model_encoder_layers_{cv_index}_{du_suffix}"
assert cv_name is not None, f"conversion failed: {du_name}. the model may not be trained by `sd-scripts`."
return cv_name
@classmethod
def convert_state_dict_name_to_compvis(cls, v2, state_dict):
"""
convert keys in state dict to load it by load_state_dict
"""
new_sd = {}
for key, value in state_dict.items():
tokens = key.split('.')
compvis_name = LoRANetworkCompvis.convert_diffusers_name_to_compvis(v2, tokens[0])
new_key = compvis_name + '.' + '.'.join(tokens[1:])
new_sd[new_key] = value
return new_sd
def __init__(self, text_encoder, unet, multiplier_tenc=1.0, multiplier_unet=1.0, modules_dim=None, modules_alpha=None) -> None:
super().__init__()
self.multiplier_unet = multiplier_unet
self.multiplier_tenc = multiplier_tenc
self.latest_mask_info = None
# check v1 or v2
self.v2 = False
for _, module in text_encoder.named_modules():
for _, child_module in module.named_modules():
if child_module.__class__.__name__ == 'MultiheadAttention':
self.v2 = True
break
if self.v2:
break
# convert lora name to CompVis and get dim and alpha
comp_vis_loras_dim_alpha = {}
for du_lora_name in modules_dim.keys():
dim = modules_dim[du_lora_name]
alpha = modules_alpha[du_lora_name]
comp_vis_lora_name = LoRANetworkCompvis.convert_diffusers_name_to_compvis(self.v2, du_lora_name)
comp_vis_loras_dim_alpha[comp_vis_lora_name] = (dim, alpha)
# create module instances
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules, multiplier):
loras = []
replaced_modules = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
# enumerate all Linear and Conv2d
if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d":
lora_name = prefix + '.' + name + '.' + child_name
lora_name = lora_name.replace('.', '_')
if '_resblocks_23_' in lora_name: # ignore last block in StabilityAi Text Encoder
break
if lora_name not in comp_vis_loras_dim_alpha:
continue
dim, alpha = comp_vis_loras_dim_alpha[lora_name]
lora = LoRAModule(lora_name, child_module, multiplier, dim, alpha)
loras.append(lora)
replaced_modules.append(child_module)
elif child_module.__class__.__name__ == "MultiheadAttention":
# make four modules: not replacing forward method but merge weights later
for suffix in ['q_proj', 'k_proj', 'v_proj', 'out_proj']:
module_name = prefix + '.' + name + '.' + child_name # ~.attn
module_name = module_name.replace('.', '_')
if '_resblocks_23_' in module_name: # ignore last block in StabilityAi Text Encoder
break
lora_name = module_name + '_' + suffix
if lora_name not in comp_vis_loras_dim_alpha:
continue
dim, alpha = comp_vis_loras_dim_alpha[lora_name]
lora_info = LoRAInfo(lora_name, module_name, child_module, multiplier, dim, alpha)
loras.append(lora_info)
replaced_modules.append(child_module)
return loras, replaced_modules
self.text_encoder_loras, te_rep_modules = create_modules(LoRANetworkCompvis.LORA_PREFIX_TEXT_ENCODER,
text_encoder, LoRANetworkCompvis.TEXT_ENCODER_TARGET_REPLACE_MODULE, self.multiplier_tenc)
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
self.unet_loras, unet_rep_modules = create_modules(
LoRANetworkCompvis.LORA_PREFIX_UNET, unet, LoRANetworkCompvis.UNET_TARGET_REPLACE_MODULE, self.multiplier_unet)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
# make backup of original forward/weights, if multiple modules are applied, do in 1st module only
backed_up = False # messaging purpose only
for rep_module in te_rep_modules + unet_rep_modules:
if rep_module.__class__.__name__ == "MultiheadAttention": # multiple MHA modules are in list, prevent to backed up forward
if not hasattr(rep_module, "_lora_org_weights"):
# avoid updating of original weights. state_dict is reference to original weights
rep_module._lora_org_weights = copy.deepcopy(rep_module.state_dict())
backed_up = True
elif not hasattr(rep_module, "_lora_org_forward"):
rep_module._lora_org_forward = rep_module.forward
backed_up = True
if backed_up:
print("original forward/weights is backed up.")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def restore(self, text_encoder, unet):
# restore forward/weights from property for all modules
restored = False # messaging purpose only
modules = []
modules.extend(text_encoder.modules())
modules.extend(unet.modules())
for module in modules:
if hasattr(module, "_lora_org_forward"):
module.forward = module._lora_org_forward
del module._lora_org_forward
restored = True
if hasattr(module, "_lora_org_weights"): # module doesn't have forward and weights at same time currently, but supports it for future changing
module.load_state_dict(module._lora_org_weights)
del module._lora_org_weights
restored = True
if restored:
print("original forward/weights is restored.")
def apply_lora_modules(self, du_state_dict):
# conversion 1st step: convert names in state_dict
state_dict = LoRANetworkCompvis.convert_state_dict_name_to_compvis(self.v2, du_state_dict)
# check state_dict has text_encoder or unet
weights_has_text_encoder = weights_has_unet = False
for key in state_dict.keys():
if key.startswith(LoRANetworkCompvis.LORA_PREFIX_TEXT_ENCODER):
weights_has_text_encoder = True
elif key.startswith(LoRANetworkCompvis.LORA_PREFIX_UNET):
weights_has_unet = True
if weights_has_text_encoder and weights_has_unet:
break
apply_text_encoder = weights_has_text_encoder
apply_unet = weights_has_unet
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
# add modules to network: this makes state_dict can be got from LoRANetwork
mha_loras = {}
for lora in self.text_encoder_loras + self.unet_loras:
if type(lora) == LoRAModule:
lora.apply_to() # ensure remove reference to original Linear: reference makes key of state_dict
self.add_module(lora.lora_name, lora)
else:
# SD2.x MultiheadAttention merge weights to MHA weights
lora_info: LoRAInfo = lora
if lora_info.module_name not in mha_loras:
mha_loras[lora_info.module_name] = {}
lora_dic = mha_loras[lora_info.module_name]
lora_dic[lora_info.lora_name] = lora_info
if len(lora_dic) == 4:
# calculate and apply
module = lora_info.module
module_name = lora_info.module_name
w_q_dw = state_dict.get(module_name + '_q_proj.lora_down.weight')
if w_q_dw is not None: # corresponding LoRA module exists
w_q_up = state_dict[module_name + '_q_proj.lora_up.weight']
w_k_dw = state_dict[module_name + '_k_proj.lora_down.weight']
w_k_up = state_dict[module_name + '_k_proj.lora_up.weight']
w_v_dw = state_dict[module_name + '_v_proj.lora_down.weight']
w_v_up = state_dict[module_name + '_v_proj.lora_up.weight']
w_out_dw = state_dict[module_name + '_out_proj.lora_down.weight']
w_out_up = state_dict[module_name + '_out_proj.lora_up.weight']
q_lora_info = lora_dic[module_name + '_q_proj']
k_lora_info = lora_dic[module_name + '_k_proj']
v_lora_info = lora_dic[module_name + '_v_proj']
out_lora_info = lora_dic[module_name + '_out_proj']
sd = module.state_dict()
qkv_weight = sd['in_proj_weight']
out_weight = sd['out_proj.weight']
dev = qkv_weight.device
def merge_weights(l_info, weight, up_weight, down_weight):
# calculate in float
scale = l_info.alpha / l_info.dim
dtype = weight.dtype
weight = weight.float() + l_info.multiplier * (up_weight.to(dev, dtype=torch.float) @ down_weight.to(dev, dtype=torch.float)) * scale
weight = weight.to(dtype)
return weight
q_weight, k_weight, v_weight = torch.chunk(qkv_weight, 3)
if q_weight.size()[1] == w_q_up.size()[0]:
q_weight = merge_weights(q_lora_info, q_weight, w_q_up, w_q_dw)
k_weight = merge_weights(k_lora_info, k_weight, w_k_up, w_k_dw)
v_weight = merge_weights(v_lora_info, v_weight, w_v_up, w_v_dw)
qkv_weight = torch.cat([q_weight, k_weight, v_weight])
out_weight = merge_weights(out_lora_info, out_weight, w_out_up, w_out_dw)
sd['in_proj_weight'] = qkv_weight.to(dev)
sd['out_proj.weight'] = out_weight.to(dev)
lora_info.module.load_state_dict(sd)
else:
# different dim, version mismatch
print(f"shape of weight is different: {module_name}. SD version may be different")
for t in ["q", "k", "v", "out"]:
del state_dict[f"{module_name}_{t}_proj.lora_down.weight"]
del state_dict[f"{module_name}_{t}_proj.lora_up.weight"]
alpha_key = f"{module_name}_{t}_proj.alpha"
if alpha_key in state_dict:
del state_dict[alpha_key]
else:
# corresponding weight not exists: version mismatch
pass
# conversion 2nd step: convert weight's shape (and handle wrapped)
state_dict = self.convert_state_dict_shape_to_compvis(state_dict)
return state_dict
def convert_state_dict_shape_to_compvis(self, state_dict):
# shape conversion
current_sd = self.state_dict() # to get target shape
wrapped = False
count = 0
for key in list(state_dict.keys()):
if key not in current_sd:
continue # might be error or another version
if "wrapped" in key:
wrapped = True
value: torch.Tensor = state_dict[key]
if value.size() != current_sd[key].size():
# print(f"convert weights shape: {key}, from: {value.size()}, {len(value.size())}")
count += 1
if len(value.size()) == 4:
value = value.squeeze(3).squeeze(2)
else:
value = value.unsqueeze(2).unsqueeze(3)
state_dict[key] = value
if tuple(value.size()) != tuple(current_sd[key].size()):
print(
f"weight's shape is different: {key} expected {current_sd[key].size()} found {value.size()}. SD version may be different")
del state_dict[key]
print(f"shapes for {count} weights are converted.")
# convert wrapped
if not wrapped:
print("remove 'wrapped' from keys")
for key in list(state_dict.keys()):
if "_wrapped_" in key:
new_key = key.replace("_wrapped_", "_")
state_dict[new_key] = state_dict[key]
del state_dict[key]
return state_dict
def set_mask(self, mask, height=None, width=None):
if mask is None:
# clear latest mask
# print("clear mask")
self.latest_mask_info = None
for lora in self.unet_loras:
lora.set_mask_dic(None)
return
# check mask image and h/w are same
if self.latest_mask_info is not None and torch.equal(mask, self.latest_mask_info[0]) and (height, width) == self.latest_mask_info[1:]:
# print("mask not changed")
return
self.latest_mask_info = (mask, height, width)
org_dtype = mask.dtype
if mask.dtype == torch.bfloat16:
mask = mask.to(torch.float)
mask_dic = {}
mask = mask.unsqueeze(0).unsqueeze(1) # b(1),c(1),h,w
def resize_add(mh, mw):
# print(mh, mw, mh * mw)
m = torch.nn.functional.interpolate(mask, (mh, mw), mode='bilinear') # doesn't work in bf16
m = m.to(org_dtype)
mask_dic[mh * mw] = m
h = height // 8
w = width // 8
for i in range(4):
resize_add(h, w)
if h % 2 == 1 or w % 2 == 1: # add extra shape if h/w is not divisible by 2
resize_add(h + h % 2, w + w % 2)
h = (h + 1) // 2
w = (w + 1) // 2
for lora in self.unet_loras:
lora.set_mask_dic(mask_dic)
return