-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
111 lines (99 loc) · 4.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import json
import requests
from typing import Dict, Any
from dotenv import load_dotenv
from mcp.server.fastmcp import FastMCP
# Load environment variables from .env file
load_dotenv()
# Retrieve Solsniffer API key from environment variables
API_KEY = os.getenv("SOLSNIFFER_API_KEY")
if not API_KEY:
raise ValueError("SOLSNIFFER_API_KEY not found in environment variables")
# Solsniffer API configuration
BASE_URL = "https://solsniffer.com/api/v2/token"
# Create an MCP server instance
mcp = FastMCP("Rug Check MCP")
def fetch_token_data(token_address: str) -> Dict:
"""Fetch token data from Solsniffer API."""
headers = {"X-API-KEY": API_KEY, "accept": "application/json"}
response = requests.get(f"{BASE_URL}/{token_address}", headers=headers)
if response.status_code == 200:
return response.json()
raise Exception(f"API request failed: {response.status_code} - {response.text}")
@mcp.tool()
def analysis_token(token_address: str) -> Dict[str, Any]:
"""
Analyze Solana token data using the Solsniffer API and return structured results.
Args:
token_address (str): The Solana token contract address to analyze (e.g., "9VxExA1iRPbuLLdSJ2rB3nyBxsyLReT4aqzZBMaBaY1p").
Must be a valid Solana public key or token address.
Returns:
Dict[str, Any]: A dictionary containing the token analysis with the following structure:
- token_address (str): The analyzed token's contract address.
- token_name (str): The name of the token (e.g., "REVSHARE").
- token_symbol (str): The token's symbol (e.g., "REVS").
- snif_score (int): Solsniffer risk score (0-100, higher indicates lower risk).
- market_cap (float): Market capitalization in USD.
- price (float): Current price per token in USD.
- supply_amount (float): Total supply of the token in circulation.
- risks (dict): Risk assessment categorized by severity:
- high (dict): High-risk indicators.
- count (int): Number of high-risk issues detected.
- details (dict): Dictionary of high-risk factors with boolean values (e.g., {"Mintable risks found": True}).
- moderate (dict): Moderate-risk indicators.
- count (int): Number of moderate-risk issues detected.
- details (dict): Dictionary of moderate-risk factors with boolean values.
- low (dict): Low-risk indicators.
- count (int): Number of low-risk issues detected.
- details (dict): Dictionary of low-risk factors with boolean values.
- audit_risk (dict): Audit-related risk factors:
- mint_disabled (bool): True if minting authority is disabled.
- freeze_disabled (bool): True if freeze authority is disabled.
- lp_burned (bool): True if liquidity pool tokens are burned.
- top_10_holders_significant (bool): True if the top 10 holders control a significant share.
Raises:
Exception: If the Solsniffer API request fails (e.g., due to an invalid token address, network issues, or API key errors).
"""
# Fetch raw data from Solsniffer API
data = fetch_token_data(token_address)
token_data = data["tokenData"]
token_info = data["tokenInfo"]
# Parse risk details from JSON strings
high_risks = json.loads(token_data["indicatorData"]["high"]["details"])
moderate_risks = json.loads(token_data["indicatorData"]["moderate"]["details"])
low_risks = json.loads(token_data["indicatorData"]["low"]["details"])
# Structure the analysis result
result = {
"token_address": token_data["tokenOverview"]["address"],
"token_name": token_data["tokenName"],
"token_symbol": token_data["tokenSymbol"],
"snif_score": token_data["score"],
"market_cap": token_info["mktCap"],
"price": float(token_info["price"]),
"supply_amount": token_info["supplyAmount"],
"risks": {
"high": {
"count": token_data["indicatorData"]["high"]["count"],
"details": high_risks
},
"moderate": {
"count": token_data["indicatorData"]["moderate"]["count"],
"details": moderate_risks
},
"low": {
"count": token_data["indicatorData"]["low"]["count"],
"details": low_risks
}
},
"audit_risk": {
"mint_disabled": token_data["auditRisk"]["mintDisabled"],
"freeze_disabled": token_data["auditRisk"]["freezeDisabled"],
"lp_burned": token_data["auditRisk"]["lpBurned"],
"top_10_holders_significant": token_data["auditRisk"]["top10Holders"]
}
}
return result
# Run the server if this file is executed directly
if __name__ == "__main__":
mcp.run()