-
Notifications
You must be signed in to change notification settings - Fork 274
/
Copy pathintent_classifier_base.py
120 lines (93 loc) · 3.91 KB
/
intent_classifier_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, TYPE_CHECKING
from pydantic import BaseModel, Field
if TYPE_CHECKING:
from mcp_agent.context import Context
class Intent(BaseModel):
"""A class that represents a single intent category"""
name: str
"""The name of the intent"""
description: str | None = None
"""A description of what this intent represents"""
examples: List[str] = Field(default_factory=list)
"""Example phrases or requests that match this intent"""
metadata: Dict[str, str] = Field(default_factory=dict)
"""Additional metadata about the intent that might be useful for classification"""
class IntentClassificationResult(BaseModel):
"""A class that represents the result of intent classification"""
intent: str
"""The classified intent name"""
p_score: float | None = None
"""
The probability score (i.e. 0->1) of the classification.
This is optional and may only be provided if the classifier is probabilistic (e.g. a probabilistic binary classifier).
"""
extracted_entities: Dict[str, str] = Field(default_factory=dict)
"""Any entities or parameters extracted from the input request that are relevant to the intent"""
class IntentClassifier(ABC):
"""
Base class for intent classification. This can be implemented using different approaches
like LLMs, embedding models, traditional ML classification models, or rule-based systems.
When to use this:
- When you need to understand the user's intention before routing or processing
- When you want to extract structured information from natural language inputs
- When you need to handle multiple related but distinct types of requests
Examples:
- Classifying customer service requests (complaint, question, feedback)
- Understanding user commands in a chat interface
- Determining the type of analysis requested for a dataset
"""
def __init__(
self, intents: List[Intent], context: Optional["Context"] = None, **kwargs
):
super().__init__(context=context, **kwargs)
self.intents = {intent.name: intent for intent in intents}
self.initialized: bool = False
if not self.intents:
raise ValueError("At least one intent must be provided")
@abstractmethod
async def classify(
self, request: str, top_k: int = 1
) -> List[IntentClassificationResult]:
"""
Classify the input request into one or more intents.
Args:
request: The input text to classify
top_k: Maximum number of top intent matches to return. May return fewer.
Returns:
List of classification results, ordered by confidence
"""
async def initialize(self):
"""Initialize the classifier. Override this method if needed."""
self.initialized = True
# Example
# Define some intents
# intents = [
# Intent(
# name="schedule_meeting",
# description="Schedule or set up a meeting or appointment",
# examples=[
# "Can you schedule a meeting with John?",
# "Set up a call for next week",
# "I need to arrange a meeting"
# ]
# ),
# Intent(
# name="check_calendar",
# description="Check calendar availability or existing appointments",
# examples=[
# "What meetings do I have today?",
# "Show me my calendar",
# "Am I free tomorrow afternoon?"
# ]
# )
# ]
# # Initialize with OpenAI embeddings
# classifier = OpenAIEmbeddingIntentClassifier(intents=intents, model="text-embedding-3-small")
# # Or use Cohere embeddings
# classifier = OpenAIEmbeddingIntentClassifier(intents=intents, model="embed-multilingual-v3.0")
# # Classify some text
# results = await classifier.classify(
# request="Can you set up a meeting with Sarah for tomorrow?"
# top_k=3
# )