-
Notifications
You must be signed in to change notification settings - Fork 269
/
Copy pathintent_classifier_llm.py
161 lines (127 loc) · 5.06 KB
/
intent_classifier_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from typing import List, Literal, Optional, TYPE_CHECKING
from pydantic import BaseModel
from mcp_agent.workflows.llm.augmented_llm import AugmentedLLM
from mcp_agent.workflows.intent_classifier.intent_classifier_base import (
Intent,
IntentClassifier,
IntentClassificationResult,
)
if TYPE_CHECKING:
from mcp_agent.context import Context
DEFAULT_INTENT_CLASSIFICATION_INSTRUCTION = """
You are a precise intent classifier that analyzes user requests to determine their intended action or purpose.
Below are the available intents with their descriptions and examples:
{context}
Your task is to analyze the following request and determine the most likely intent(s). Consider:
- How well the request matches the intent descriptions and examples
- Any specific entities or parameters that should be extracted
- The confidence level in the classification
Request: {request}
Respond in JSON format:
{{
"classifications": [
{{
"intent": <intent name>,
"confidence": <float between 0 and 1>,
"extracted_entities": {{
"entity_name": "entity_value"
}},
"reasoning": <brief explanation>
}}
]
}}
Return up to {top_k} most likely intents. Only include intents with reasonable confidence (>0.5).
If no intents match well, return an empty list.
"""
class LLMIntentClassificationResult(IntentClassificationResult):
"""The result of intent classification using an LLM."""
confidence: Literal["low", "medium", "high"]
"""Confidence level of the classification"""
reasoning: str | None = None
"""Optional explanation of why this intent was chosen"""
class StructuredIntentResponse(BaseModel):
"""The complete structured response from the LLM"""
classifications: List[LLMIntentClassificationResult]
class LLMIntentClassifier(IntentClassifier):
"""
An intent classifier that uses an LLM to determine the user's intent.
Particularly useful when you need:
- Flexible understanding of natural language
- Detailed reasoning about classifications
- Entity extraction alongside classification
"""
def __init__(
self,
llm: AugmentedLLM,
intents: List[Intent],
classification_instruction: str | None = None,
context: Optional["Context"] = None,
**kwargs,
):
super().__init__(intents=intents, context=context, **kwargs)
self.llm = llm
self.classification_instruction = classification_instruction
@classmethod
async def create(
cls,
llm: AugmentedLLM,
intents: List[Intent],
classification_instruction: str | None = None,
) -> "LLMIntentClassifier":
"""
Factory method to create and initialize a classifier.
Use this instead of constructor since we need async initialization.
"""
instance = cls(
llm=llm,
intents=intents,
classification_instruction=classification_instruction,
)
await instance.initialize()
return instance
async def classify(
self, request: str, top_k: int = 1
) -> List[LLMIntentClassificationResult]:
if not self.initialized:
self.initialize()
classification_instruction = (
self.classification_instruction or DEFAULT_INTENT_CLASSIFICATION_INSTRUCTION
)
# Generate the context with intent descriptions and examples
context = self._generate_context()
# Format the prompt with all the necessary information
prompt = classification_instruction.format(
context=context, request=request, top_k=top_k
)
# Get classification from LLM
response = await self.llm.generate_structured(
message=prompt, response_model=StructuredIntentResponse
)
if not response or not response.classifications:
return []
results = []
for classification in response.classifications:
intent = self.intents.get(classification.intent)
if not intent:
# Skip invalid categories
# TODO: saqadri - log or raise an error
continue
results.append(classification)
return results[:top_k]
def _generate_context(self) -> str:
"""Generate a formatted context string describing all intents"""
context_parts = []
for idx, intent in enumerate(self.intents.values(), 1):
description = (
f"{idx}. Intent: {intent.name}\nDescription: {intent.description}"
)
if intent.examples:
examples = "\n".join(f"- {example}" for example in intent.examples)
description += f"\nExamples:\n{examples}"
if intent.metadata:
metadata = "\n".join(
f"- {key}: {value}" for key, value in intent.metadata.items()
)
description += f"\nAdditional Information:\n{metadata}"
context_parts.append(description)
return "\n\n".join(context_parts)