-
Notifications
You must be signed in to change notification settings - Fork 274
/
Copy pathrouter_llm_anthropic.py
67 lines (59 loc) · 2.27 KB
/
router_llm_anthropic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from typing import Callable, List, Optional, TYPE_CHECKING
from mcp_agent.agents.agent import Agent
from mcp_agent.workflows.llm.augmented_llm_anthropic import AnthropicAugmentedLLM
from mcp_agent.workflows.router.router_llm import LLMRouter
if TYPE_CHECKING:
from mcp_agent.context import Context
ROUTING_SYSTEM_INSTRUCTION = """
You are a highly accurate request router that directs incoming requests to the most appropriate category.
A category is a specialized destination, such as a Function, an MCP Server (a collection of tools/functions), or an Agent (a collection of servers).
You will be provided with a request and a list of categories to choose from.
You can choose one or more categories, or choose none if no category is appropriate.
"""
class AnthropicLLMRouter(LLMRouter):
"""
An LLM router that uses an Anthropic model to make routing decisions.
"""
def __init__(
self,
server_names: List[str] | None = None,
agents: List[Agent] | None = None,
functions: List[Callable] | None = None,
routing_instruction: str | None = None,
context: Optional["Context"] = None,
**kwargs,
):
anthropic_llm = AnthropicAugmentedLLM(
instruction=ROUTING_SYSTEM_INSTRUCTION, context=context
)
super().__init__(
llm=anthropic_llm,
server_names=server_names,
agents=agents,
functions=functions,
routing_instruction=routing_instruction,
context=context,
**kwargs,
)
@classmethod
async def create(
cls,
server_names: List[str] | None = None,
agents: List[Agent] | None = None,
functions: List[Callable] | None = None,
routing_instruction: str | None = None,
context: Optional["Context"] = None,
) -> "AnthropicLLMRouter":
"""
Factory method to create and initialize a router.
Use this instead of constructor since we need async initialization.
"""
instance = cls(
server_names=server_names,
agents=agents,
functions=functions,
routing_instruction=routing_instruction,
context=context,
)
await instance.initialize()
return instance