forked from golangci/golangci-lint
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcommon.go
179 lines (163 loc) · 4.61 KB
/
common.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package lcs
import (
"log"
"sort"
)
// lcs is a longest common sequence
type lcs []diag
// A diag is a piece of the edit graph where A[X+i] == B[Y+i], for 0<=i<Len.
// All computed diagonals are parts of a longest common subsequence.
type diag struct {
X, Y int
Len int
}
// sort sorts in place, by lowest X, and if tied, inversely by Len
func (l lcs) sort() lcs {
sort.Slice(l, func(i, j int) bool {
if l[i].X != l[j].X {
return l[i].X < l[j].X
}
return l[i].Len > l[j].Len
})
return l
}
// validate that the elements of the lcs do not overlap
// (can only happen when the two-sided algorithm ends early)
// expects the lcs to be sorted
func (l lcs) valid() bool {
for i := 1; i < len(l); i++ {
if l[i-1].X+l[i-1].Len > l[i].X {
return false
}
if l[i-1].Y+l[i-1].Len > l[i].Y {
return false
}
}
return true
}
// repair overlapping lcs
// only called if two-sided stops early
func (l lcs) fix() lcs {
// from the set of diagonals in l, find a maximal non-conflicting set
// this problem may be NP-complete, but we use a greedy heuristic,
// which is quadratic, but with a better data structure, could be D log D.
// indepedent is not enough: {0,3,1} and {3,0,2} can't both occur in an lcs
// which has to have monotone x and y
if len(l) == 0 {
return nil
}
sort.Slice(l, func(i, j int) bool { return l[i].Len > l[j].Len })
tmp := make(lcs, 0, len(l))
tmp = append(tmp, l[0])
for i := 1; i < len(l); i++ {
var dir direction
nxt := l[i]
for _, in := range tmp {
if dir, nxt = overlap(in, nxt); dir == empty || dir == bad {
break
}
}
if nxt.Len > 0 && dir != bad {
tmp = append(tmp, nxt)
}
}
tmp.sort()
if false && !tmp.valid() { // debug checking
log.Fatalf("here %d", len(tmp))
}
return tmp
}
type direction int
const (
empty direction = iota // diag is empty (so not in lcs)
leftdown // proposed acceptably to the left and below
rightup // proposed diag is acceptably to the right and above
bad // proposed diag is inconsistent with the lcs so far
)
// overlap trims the proposed diag prop so it doesn't overlap with
// the existing diag that has already been added to the lcs.
func overlap(exist, prop diag) (direction, diag) {
if prop.X <= exist.X && exist.X < prop.X+prop.Len {
// remove the end of prop where it overlaps with the X end of exist
delta := prop.X + prop.Len - exist.X
prop.Len -= delta
if prop.Len <= 0 {
return empty, prop
}
}
if exist.X <= prop.X && prop.X < exist.X+exist.Len {
// remove the beginning of prop where overlaps with exist
delta := exist.X + exist.Len - prop.X
prop.Len -= delta
if prop.Len <= 0 {
return empty, prop
}
prop.X += delta
prop.Y += delta
}
if prop.Y <= exist.Y && exist.Y < prop.Y+prop.Len {
// remove the end of prop that overlaps (in Y) with exist
delta := prop.Y + prop.Len - exist.Y
prop.Len -= delta
if prop.Len <= 0 {
return empty, prop
}
}
if exist.Y <= prop.Y && prop.Y < exist.Y+exist.Len {
// remove the beginning of peop that overlaps with exist
delta := exist.Y + exist.Len - prop.Y
prop.Len -= delta
if prop.Len <= 0 {
return empty, prop
}
prop.X += delta // no test reaches this code
prop.Y += delta
}
if prop.X+prop.Len <= exist.X && prop.Y+prop.Len <= exist.Y {
return leftdown, prop
}
if exist.X+exist.Len <= prop.X && exist.Y+exist.Len <= prop.Y {
return rightup, prop
}
// prop can't be in an lcs that contains exist
return bad, prop
}
// manipulating Diag and lcs
// prepend a diagonal (x,y)-(x+1,y+1) segment either to an empty lcs
// or to its first Diag. prepend is only called to extend diagonals
// the backward direction.
func (lcs lcs) prepend(x, y int) lcs {
if len(lcs) > 0 {
d := &lcs[0]
if int(d.X) == x+1 && int(d.Y) == y+1 {
// extend the diagonal down and to the left
d.X, d.Y = int(x), int(y)
d.Len++
return lcs
}
}
r := diag{X: int(x), Y: int(y), Len: 1}
lcs = append([]diag{r}, lcs...)
return lcs
}
// append appends a diagonal, or extends the existing one.
// by adding the edge (x,y)-(x+1.y+1). append is only called
// to extend diagonals in the forward direction.
func (lcs lcs) append(x, y int) lcs {
if len(lcs) > 0 {
last := &lcs[len(lcs)-1]
// Expand last element if adjoining.
if last.X+last.Len == x && last.Y+last.Len == y {
last.Len++
return lcs
}
}
return append(lcs, diag{X: x, Y: y, Len: 1})
}
// enforce constraint on d, k
func ok(d, k int) bool {
return d >= 0 && -d <= k && k <= d
}